Abstract Natural diamonds and their inclusions provide unique glimpses of mantle processes from as deep as ~800 km and dating back to 3.5 G.y. Once formed, diamonds are commonly interpreted to travel upward, either slowly within mantle upwellings or rapidly within explosive, carbonate-rich magmas erupting at the surface. Although global tectonics induce subduction of material from shallow depths into the deep mantle, mineralogical evidence for downward movements of diamonds has never been reported. We report the finding of an unusual composite inclusion consisting of ringwoodite (the second finding to date), tetragonal zirconia, and coesite within an alluvial super-deep diamond from the Central African Republic. We interpret zirconia + coesite and ringwoodite as prograde transformation products after zircon or reidite (ZrSiO4) and olivine or wadsleyite, respectively. This inclusion assemblage can be explained if the diamond traveled downward after entrapping olivine/wadsleyite + zircon/reidite, dragged down by a subducting slab, before being delivered to the surface. This indicates that the commonly assumed view that diamonds form at, and capture material from, a specific mantle level and then travel upward is probably too simplistic. 
                        more » 
                        « less   
                    
                            
                            High pressure-temperature single-crystal elasticity of ringwoodite: Implications for detecting the 520 discontinuity and metastable ringwoodite at depths greater than 660 km
                        
                    More Like this
- 
            
- 
            Abstract Deep‐focus earthquakes at 350–660 km are presumably caused by olivine‐spinel phase transformation (PT). This cannot, however, explain the observed high seismic strain rate, which requires PT to complete within seconds, while metastable olivine does not transform for over a million years. Recent theory quantitatively describes how severe plastic deformations (SPD) can solve this dilemma but lacking experimental proof. Here, we introduce dynamic rotational diamond anvil cell with rough diamond anvils to impose SPD on San Carlos olivine. While olivine never transformed to spinel at room temperature, we obtained reversible olivine‐ringwoodite PT under SPD at 15–28 GPa within tens of seconds. The PT pressure reduces with increasing dislocation density, microstrain, plastic strain, and decreasing crystallite size. Results demonstrate a new strain‐induced PT mechanism compared to a pressure/temperature‐induced one. Combined with SPD during olivine subduction, this mechanism can accelerate olivine‐ringwoodite PT from millions of years to timescales relevant to earthquakes.more » « less
- 
            The introduction of multigrain crystallography (MGC) applied in a laser-heated diamond anvil cell (LH-DAC) using synchrotron X-rays has provided a new path to investigate the microstructural evolution of materials at extreme conditions, allowing for simultaneous investigations of phase identification, strain state determination, and orientation relations across phase transitions in a single experiment. Here, we applied this method to a sample of San Carlos olivine beginning at ambient conditions and through the α-olivine → γ-ringwoodite phase transition. At ambient temperatures, by measuring the evolution of individual Bragg reflections, olivine shows profuse angular streaking consistent with the onset of yielding at a measured stress of ~1.5 GPa, considerably lower than previously reported, which may have implications for mantle evolution. Furthermore, γ-ringwoodite phase was found to nucleate as micron to sub-micron grains imbedded with small amounts of a secondary phase at 15 GPa and 1000 °C. Using MGC, we were able to extract and refine individual crystallites of the secondary unknown phase where it was found to have a structure consistent with the ε-phase previously described in chondritic meteorites.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    