skip to main content

Title: GeoGraph: A Framework for Graph Processing on Geometric Data
In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the Geo- Graph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and b-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing.
Authors:
; ; ; ;
Award ID(s):
1845763
Publication Date:
NSF-PAR ID:
10317713
Journal Name:
ACM SIGOPS Operating Systems Review
Volume:
55
Issue:
1
ISSN:
0163-5980
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph processing workloads are memory intensive with irregular access patterns and large memory footprint resulting in low data locality. Their popular software implementations typically employ either Push or Pull style propagation of changes through the graph over multiple iterations that follow the Bulk Synchronous Model. The performance of these algorithms on traditional computing systems is limited by random reads/writes of vertex values, synchronization overheads, and additional overheads for tracking active sets of vertices or edges across iterations. In this paper, we present GraphPulse, a hardware framework for asynchronous graph processing with event-driven scheduling that overcomes the performance limitations of software frameworks. Event-driven computation model enables a parallel dataflow-style execution where atomic updates and active sets tracking are inherent to the model; thus, scheduling complexity is reduced and scalability is enhanced. The dataflow nature of the architecture also reduces random reads of vertex values by carrying the values in the events themselves. We capitalize on the update properties commonly present in graph algorithms to coalesce in-flight events and substantially reduce the event storage requirement and the processing overheads incurred. GraphPulse event-model naturally supports asynchronous graph processing, enabling substantially faster convergence by exploiting available parallelism, reducing work, and eliminating synchronization at iterationmore »boundaries. The framework provides easy to use programming interface for faster development of hardware graph accelerators. A single GraphPulse accelerator achieves up to 74x speedup (28x on average) over Ligra, a state of the art software framework, running on a 12 core CPU. It also achieves an average of 6.2x speedup over Graphicionado, a state of the art graph processing accelerator.« less
  2. In general, the performance of parallel graph processing is determined by three pairs of critical parameters, namely synchronous or asynchronous execution mode (Sync or Async), Push or Pull communication mechanism (Push or Pull), and Data-driven or Topology-driven traversing scheme (DD or TD), which increases the complexity and sophistication of programming and system implementation of GPU. Existing graph-processing frameworks mainly use a single combination in the entire execution for a given application, but we have observed their variable and suboptimal performance. In this paper, we present SEP-Graph, a highly efficient software framework for graph-processing on GPU. The hybrid execution mode is automatically switched among three pairs of parameters, with an objective to achieve the shortest execution time in each iteration. We also apply a set of optimizations to SEP-Graph, considering the characteristics of graph algorithms and underlying GPU architectures. We show the effectiveness of SEP-Graph based on our intensive and comparative performance evaluation on NVIDIA 1080, P100, and V100 GPUs. Compared with existing and representative GPU graph-processing framework Groute and Gunrock, SEP-Graph can reduce execution time up to 45.8 times and 39.4 times.
  3. High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which allow graph algorithms to be expressed in a performant, succinct, composable, and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction.Exploiting output sparsityallows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in “GraphBLAST”, the first high-performance linear algebra-based graph framework on NVIDIA GPUs thatmore »is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse andGBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework ,while offering a simpler and more concise programming model.« less
  4. There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the interfaces, optimizations, and graph processing techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. Formore »many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph Based Benchmark Suite (GBBS).« less
  5. Alkan, Can (Ed.)
    Abstract Motivation Pangenome variation graphs model the mutual alignment of collections of DNA sequences. A set of pairwise alignments implies a variation graph, but there are no scalable methods to generate such a graph from these alignments. Existing related approaches depend on a single reference, a specific ordering of genomes or a de Bruijn model based on a fixed k-mer length. A scalable, self-contained method to build pangenome graphs without such limitations would be a key step in pangenome construction and manipulation pipelines. Results We design the seqwish algorithm, which builds a variation graph from a set of sequences and alignments between them. We first transform the alignment set into an implicit interval tree. To build up the variation graph, we query this tree-based representation of the alignments to reduce transitive matches into single DNA segments in a sequence graph. By recording the mapping from input sequence to output graph, we can trace the original paths through this graph, yielding a pangenome variation graph. We present an implementation that operates in external memory, using disk-backed data structures and lock-free parallel methods to drive the core graph induction step. We demonstrate that our method scales to very large graph induction problemsmore »by applying it to build pangenome graphs for several species. Availability and implementation seqwish is published as free software under the MIT open source license. Source code and documentation are available at https://github.com/ekg/seqwish. seqwish can be installed via Bioconda https://bioconda.github.io/recipes/seqwish/README.html or GNU Guix https://github.com/ekg/guix-genomics/blob/master/seqwish.scm.« less