skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GeoGraph: A Framework for Graph Processing on Geometric Data
In many applications of graph processing, the input data is often generated from an underlying geometric point data set. However, existing high-performance graph processing frameworks assume that the input data is given as a graph. Therefore, to use these frameworks, the user must write or use external programs based on computational geometry algorithms to convert their point data set to a graph, which requires more programming effort and can also lead to performance degradation. In this paper, we present our ongoing work on the Geo- Graph framework for shared-memory multicore machines, which seamlessly supports routines for parallel geometric graph construction and parallel graph processing within the same environment. GeoGraph supports graph construction based on k-nearest neighbors, Delaunay triangulation, and b-skeleton graphs. It can then pass these generated graphs to over 25 graph algorithms. GeoGraph contains highperformance parallel primitives and algorithms implemented in C++, and includes a Python interface. We present four examples of using GeoGraph, and some experimental results showing good parallel speedups and improvements over the Higra library. We conclude with a vision of future directions for research in bridging graph and geometric data processing.  more » « less
Award ID(s):
1845763
PAR ID:
10317713
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM SIGOPS Operating Systems Review
Volume:
55
Issue:
1
ISSN:
0163-5980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Graph processing workloads are memory intensive with irregular access patterns and large memory footprint resulting in low data locality. Their popular software implementations typically employ either Push or Pull style propagation of changes through the graph over multiple iterations that follow the Bulk Synchronous Model. The performance of these algorithms on traditional computing systems is limited by random reads/writes of vertex values, synchronization overheads, and additional overheads for tracking active sets of vertices or edges across iterations. In this paper, we present GraphPulse, a hardware framework for asynchronous graph processing with event-driven scheduling that overcomes the performance limitations of software frameworks. Event-driven computation model enables a parallel dataflow-style execution where atomic updates and active sets tracking are inherent to the model; thus, scheduling complexity is reduced and scalability is enhanced. The dataflow nature of the architecture also reduces random reads of vertex values by carrying the values in the events themselves. We capitalize on the update properties commonly present in graph algorithms to coalesce in-flight events and substantially reduce the event storage requirement and the processing overheads incurred. GraphPulse event-model naturally supports asynchronous graph processing, enabling substantially faster convergence by exploiting available parallelism, reducing work, and eliminating synchronization at iteration boundaries. The framework provides easy to use programming interface for faster development of hardware graph accelerators. A single GraphPulse accelerator achieves up to 74x speedup (28x on average) over Ligra, a state of the art software framework, running on a 12 core CPU. It also achieves an average of 6.2x speedup over Graphicionado, a state of the art graph processing accelerator. 
    more » « less
  2. In general, the performance of parallel graph processing is determined by three pairs of critical parameters, namely synchronous or asynchronous execution mode (Sync or Async), Push or Pull communication mechanism (Push or Pull), and Data-driven or Topology-driven traversing scheme (DD or TD), which increases the complexity and sophistication of programming and system implementation of GPU. Existing graph-processing frameworks mainly use a single combination in the entire execution for a given application, but we have observed their variable and suboptimal performance. In this paper, we present SEP-Graph, a highly efficient software framework for graph-processing on GPU. The hybrid execution mode is automatically switched among three pairs of parameters, with an objective to achieve the shortest execution time in each iteration. We also apply a set of optimizations to SEP-Graph, considering the characteristics of graph algorithms and underlying GPU architectures. We show the effectiveness of SEP-Graph based on our intensive and comparative performance evaluation on NVIDIA 1080, P100, and V100 GPUs. Compared with existing and representative GPU graph-processing framework Groute and Gunrock, SEP-Graph can reduce execution time up to 45.8 times and 39.4 times. 
    more » « less
  3. null (Ed.)
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which allow graph algorithms to be expressed in a performant, succinct, composable, and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction.Exploiting output sparsityallows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in “GraphBLAST”, the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse andGBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework ,while offering a simpler and more concise programming model. 
    more » « less
  4. While there has been significant work on parallel graph processing, there has been very surprisingly little work on high-performance hypergraph processing. This paper presents a collection of efficient parallel algorithms for hypergraph processing, including algorithms for betweenness centrality, maximal independent set, k-core decomposition, hypertrees, hyperpaths, connected components, PageRank, and single-source shortest paths. For these problems, we either provide new parallel algorithms or more efficient implementations than prior work. Furthermore, our algorithms are theoretically-efficient in terms of work and depth. To implement our algorithms, we extend the Ligra graph processing framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments on a 72-core machine and show that our algorithms obtain excellent parallel speedups, and are significantly faster than algorithms in existing hypergraph processing frameworks. 
    more » « less
  5. Modern machine learning systems are increasingly trained on large amounts of data embedded in high-dimensional spaces. Often this is done without analyzing the structure of the dataset. In this work, we propose a framework to study the geometric structure of the data. We make use of our recently introduced non-negative kernel (NNK) regression graphs to estimate the point density, intrinsic dimension, and linearity of the data manifold (curvature). We further generalize the graph construction and geometric estimation to multiple scales by iteratively merging neighborhoods in the input data. Our experiments demonstrate the effectiveness of our proposed approach over other baselines in estimating the local geometry of the data manifolds on synthetic and real datasets. 
    more » « less