skip to main content

Title: Red to near-infrared phosphorescent Ir( iii ) complexes with electron-rich chelating ligands
The design of molecular phosphors with near-unity photoluminescence quantum yields in the low-energy regions of the spectrum, red to near-infrared, is a long-standing challenge. Because of the energy gap law and the quantum mechanical dependence of radiative decay rate on the excited-state energy, compounds which luminesce in this region of the spectrum typically suffer from low quantum yields. In this article, we highlight our group's advances in the design of top-performing cyclometalated iridium complexes which phosphoresce in red to near-infrared regions. The compounds we have introduced in this body of work have the general formula Ir(C^N) 2 (L^X), where C^N is a cyclometalating ligand that controls the photoluminescence color and L^X is a monoanionic chelating ancillary ligand. The Ir(C^N) 2 (L^X) structure type is among the most widely studied and technologically successful classes of molecular phosphors, particularly when L^X = acetylacetonate (acac). In our work we have pioneered the use of electron-rich, nitrogen containing ancillary (L^X) ligands as a means of controlling the excited-state dynamics and optimizing them to give record-breaking phosphorescence quantum yields. This paper progresses through our work in three distinct regions of the spectrum – red, deep-red, and near-infrared – and summarizes the many insights we have more » gained on the relationships between molecular structure, frontier orbital energies, and excited-state dynamics. « less
Award ID(s):
Publication Date:
Journal Name:
Chemical Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we describe bis-cyclometalated iridium complexes with efficient deep-red luminescence. Two different cyclometalating (C^N) ligands-1-phenylisoquinoline (piq) and 2-(2-pyridyl)benzothiophene (btp)-are used with five strong π-donating ancillary ligands (L^X) to furnish a suite of nine new complexes with the general formula Ir(C^N) 2 (L^X). Improvements in deep-red photoluminescence quantum yields were accomplished by the incorporation of sterically encumbering substituents onto the ancillary ligand, which can enhance the radiative rate constant ( k r ) and/or reduce the non-radiative rate constant ( k nr ). Five of the complexes were characterized by X-ray crystallography, and all of them were investigated by in-depth spectroscopic and electrochemical measurements.
  2. Utilizing a terphenyl bisanilide ligand, two Dy( iii ) compounds [K(DME) n ][L Ar Dy(X) 2 ] (L Ar = {C 6 H 4 [(2,6- i PrC 6 H 3 )NC 6 H 4 ] 2 } 2− ), X = Cl ( 1 ) and X = I ( 2 ) were synthesized. The ligand imposes an unusual see-saw shaped molecular geometry leading to a coordinatively unsaturated metal complex with near-linear N–Dy–N (avg. 159.9° for 1 and avg. 160.4° for 2 ) angles. These compounds exhibit single-molecule magnet (SMM) behavior with significant uniaxial magnetic anisotropy as a result of the transverse coordination of the bisanilide ligand which yields high energy barriers to magnetic spin reversal of U eff = 1334 K/927 cm −1 ( 1 ) and 1278 K/888 cm −1 ( 2 ) in zero field. Ab initio calculations reveal that the dominant crystal field of the bisanilide ligand controls the orientation of the main magnetic axis which runs nearly parallel to the N–Dy–N bonds, despite the identity of the halide ligand. Analysis of the relaxation dynamics reveals a ca. 14-fold decrease in the rate of quantum tunneling of the magnetisation when X = I ( 2 ).more »Most notably, the relaxation times were on average 5.6× longer at zero field when the heavier group 17 congener was employed. However, no direct evidence of a heavy atom effect on the Orbach relaxation was obtained as the height of the barrier is defined by the dominant bisanilide ligand.« less
  3. In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH 3 CN)] n+ , containing the tridentate tpy ligand (tpy = 2,2′:6′,2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291–10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet–triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet–triplet energy gaps. The major goal of this work was to assess how the Ru–NC and Ru–L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru–NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have themore »strongest Ru–NC bonds suggesting that breaking the Ru–NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet–triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues.« less
  4. Developing chemically and thermally stable, highly efficient green-emitting inorganic phosphors is a significant challenge in solid-state lighting. One accessible pathway for achieving green emission is by forming a solid solution with superior blue-emitting materials. In this work, we demonstrate that the cyan-emission ( λ em = 481 nm) of the BaScO 2 F:Eu 2+ perovskite can be red-shifted by forming a solid solution following (Ba 1− x Sr x ) 0.98 Eu 0.02 ScO 2 F ( x = 0, 0.075, 0.15, 0.25, 0.33, 0.40). Although green emission is achieved ( λ em = 516 nm) as desired, the thermal quenching (TQ) resistance is reduced, and the photoluminescence quantum yield (PLQY) drops by 65%. Computation reveals the source of these changes. Surprisingly, a basic density functional theory analysis shows the gradual Sr Ba substitution has negligible effects on the band gap ( E g ) energy, suggesting the activation energy barrier for the thermal ionization quenching remains unchanged, while the nearly constant Debye temperature indicates no loss of average structural rigidity to explain the decrease in the PLQY. Instead, temperature-dependent ab initio molecular dynamics (AIMD) simulations show that gradual changes of the Eu 2+ ion's local coordination environment rigidity aremore »responsible for the drop in the observed TQ and PLQY. These results express the need to computationally analyze the local rare-earth environment as a function of temperature to understand the fundamental origin of optical properties in new inorganic phosphors.« less
  5. We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn.« less