skip to main content

Title: Grafs: declarative graph analytics
Graph analytics elicits insights from large graphs to inform critical decisions for business, safety and security. Several large-scale graph processing frameworks feature efficient runtime systems; however, they often provide programming models that are low-level and subtly different from each other. Therefore, end users can find implementation and specially optimization of graph analytics error-prone and time-consuming. This paper regards the abstract interface of the graph processing frameworks as the instruction set for graph analytics, and presents Grafs, a high-level declarative specification language for graph analytics and a synthesizer that automatically generates efficient code for five high-performance graph processing frameworks. It features novel semantics-preserving fusion transformations that optimize the specifications and reduce them to three primitives: reduction over paths, mapping over vertices and reduction over vertices. Reductions over paths are commonly calculated based on push or pull models that iteratively apply kernel functions at the vertices. This paper presents conditions, parametric in terms of the kernel functions, for the correctness and termination of the iterative models, and uses these conditions as specifications to automatically synthesize the kernel functions. Experimental results show that the generated code matches or outperforms handwritten code, and that fusion accelerates execution.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While there has been significant work on parallel graph processing, there has been very surprisingly little work on high-performance hypergraph processing. This paper presents a collection of efficient parallel algorithms for hypergraph processing, including algorithms for betweenness centrality, maximal independent set, k-core decomposition, hypertrees, hyperpaths, connected components, PageRank, and single-source shortest paths. For these problems, we either provide new parallel algorithms or more efficient implementations than prior work. Furthermore, our algorithms are theoretically-efficient in terms of work and depth. To implement our algorithms, we extend the Ligra graph processing framework to support hypergraphs, and our implementations benefit from graph optimizations including switching between sparse and dense traversals based on the frontier size, edge-aware parallelization, using buckets to prioritize processing of vertices, and compression. Our experiments on a 72-core machine and show that our algorithms obtain excellent parallel speedups, and are significantly faster than algorithms in existing hypergraph processing frameworks. 
    more » « less
  2. This paper presents GraphRex, an efficient, robust, scalable, and easy-to-program framework for graph processing on datacenter infrastructure. To users, GraphRex presents a declarative, Datalog-like interface that is natural and expressive. Underneath, it compiles those queries into efficient implementations. A key technical contribution of GraphRex is the identification and optimization of a set of global operators whose efficiency is crucial to the good performance of datacenter-based, large graph analysis. Our experimental results show that GraphRex significantly outperforms existing frameworks---both high- and low-level---in scenarios ranging across a wide variety of graph workloads and network conditions, sometimes by two orders of magnitude. 
    more » « less
  3. Many graph problems can be solved using ordered parallel graph algorithms that achieve significant speedup over their unordered counterparts by reducing redundant work. This paper introduces a new priority-based extension to GraphIt, a domain-specific language for writing graph applications, to simplify writing high-performance parallel ordered graph algorithms. The extension enables vertices to be processed in a dynamic order while hiding low-level implementation details from the user. We extend the compiler with new program analyses, transformations, and code generation to produce fast implementations of ordered parallel graph algorithms. We also introduce bucket fusion, a new performance optimization that fuses together different rounds of ordered algorithms to reduce synchronization overhead, resulting in 1.2x--3x speedup over the fastest existing ordered algorithm implementations on road networks with large diameters. With the extension, GraphIt achieves up to 3x speedup on six ordered graph algorithms over state-of-the-art frameworks and hand-optimized implementations (Julienne, Galois, and GAPBS) that support ordered algorithms. 
    more » « less
  4. Existing deep neural network (DNN) frameworks optimize the computation graph of a DNN by applying graph transformations manually designed by human experts. This approach misses possible graph optimizations and is difficult to scale, as new DNN operators are introduced on a regular basis. We propose TASO, the first DNN computation graph optimizer that automatically generates graph substitutions. TASO takes as input a list of operator specifications and generates candidate substitutions using the given operators as basic building blocks. All generated substitutions are formally verified against the operator specifications using an automated theorem prover. To optimize a given DNN computation graph, TASO performs a cost-based backtracking search, applying the substitutions to find an optimized graph, which can be directly used by existing DNN frameworks. Our evaluation on five real-world DNN architectures shows that TASO outperforms existing DNN frameworks by up to 2.8X, while requiring significantly less human effort. For example, TensorFlow currently contains approximately 53,000 lines of manual optimization rules, while the operator specifications needed by TASO are only 1,400 lines of code. 
    more » « less
  5. null (Ed.)
    Graph processing frameworks are typically designed to optimize the evaluation of a single graph query. However, in practice, we often need to respond to multiple graph queries, either from different users or from a single user performing a complex analytics task. Therefore in this paper we develop SimGQ, a system that optimizes simultaneous evaluation of a group of vertex queries that originate at different source vertices (e.g., multiple shortest path queries originating at different source vertices) and delivers substantial speedups over a conventional framework that evaluates and responds to queries one by one. The performance benefits are achieved via batching and sharing. Batching fully utilizes system resources to evaluate a batch of queries and amortizes runtime overheads incurred due to fetching vertices and edge lists, synchronizing threads, and maintaining computation frontiers. Sharing dynamically identifies shared queries that substantially represent subcomputations in the evaluation of different queries in a batch, evaluates the shared queries, and then uses their results to accelerate the evaluation of all queries in the batch. With four input power-law graphs and four graph algorithms SimGQ achieves speedups of up to 45.67 × with batch sizes of up to 512 queries over the baseline implementation that evaluates the queries one by one using the state of the art Ligra system. Moreover, both batching and sharing contribute substantially to the speedups. 
    more » « less