skip to main content


Title: Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease
The main protease (M pro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M pro , a cysteine protease, have been determined, facilitating structure-based drug design. M pro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, M pro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV M pro , but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 M pro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of M pro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 M pro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.  more » « less
Award ID(s):
1828187
NSF-PAR ID:
10318232
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
4
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nu-cleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. 
    more » « less
  2. BACE1 is a major therapeutic target for prevention and treatment of Alzheimer's disease. Developing inhibitors that can selectively target BACE1 in favor of other proteases, especially cathepsin D (CatD), has presented significant challenges. Here, we investigate the conformational dynamics and protonation states of BACE1 and CatD using continuous constant pH molecular dynamics with pH replica‐exchange sampling protocol. Despite similar structure, BACE1 and CatD exhibit markedly different active site dynamics. BACE1 displays pH‐dependent flap dynamics that controls substrate accessibility, while the CatD flap is relatively rigid and remains open in the pH range 2.5–6. Interestingly, although each protease hydrolyzes peptide bonds, the protonation states of the catalytic dyads are different within the active pH range. The acidic and basic components of the BACE1 catalytic dyad are clear, while either aspartic acid of the CatD catalytic dyad could play the role of acid or base. Finally, we investigate binding of the inhibitor LY2811376 developed by Eli Lilly to BACE1 and CatD. Surprisingly, in the enzyme active pH range, LY2811376 forms a stronger salt bridge with the catalytic dyad in CatD than in BACE1, which might explain the retinal toxicity of the inhibitor related to off‐target inhibition of CatD. This work highlights the complexity and challenge in structure‐based drug design where receptor‐ligand binding induces protonation state change in both the protein and the inhibitor. © 2017 Wiley Periodicals, Inc.

     
    more » « less
  3. null (Ed.)
    Currently, there is neither effective antiviral drugs nor vaccine for coronavirus disease 2019 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and low similarity with human genes, SARS-CoV-2 main protease (M pro ) is one of the most favorable drug targets. However, the current understanding of the molecular mechanism of M pro inhibition is limited by the lack of reliable binding affinity ranking and prediction of existing structures of M pro –inhibitor complexes. This work integrates mathematics ( i.e. , algebraic topology) and deep learning (MathDL) to provide a reliable ranking of the binding affinities of 137 SARS-CoV-2 M pro inhibitor structures. We reveal that Gly143 residue in M pro is the most attractive site to form hydrogen bonds, followed by Glu166, Cys145, and His163. We also identify 71 targeted covalent bonding inhibitors. MathDL was validated on the PDBbind v2016 core set benchmark and a carefully curated SARS-CoV-2 inhibitor dataset to ensure the reliability of the present binding affinity prediction. The present binding affinity ranking, interaction analysis, and fragment decomposition offer a foundation for future drug discovery efforts. 
    more » « less
  4. There is an urgent need to repurpose drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent computational-experimental screenings have identified several existing drugs that could serve as effective inhibitors of the virus’ main protease, M pro , which is involved in gene expression and replication. Among these, ebselen (2-phenyl-1,2-benzoselenazol-3-one) appears to be particularly promising. Here, we examine, at a molecular level, the potential of ebselen to decrease M pro activity. We find that it exhibits a distinct affinity for the catalytic region. Our results reveal a higher-affinity, previously unknown binding site localized between the II and III domains of the protein. A detailed strain analysis indicates that, on such a site, ebselen exerts a pronounced allosteric effect that regulates catalytic site access through surface-loop interactions, thereby inducing a reconfiguration of water hotspots. Together, these findings highlight the promise of ebselen as a repurposed drug against SARS-CoV-2. 
    more » « less
  5. Abstract

    As COVID‐19 infection caused severe public health concerns recently, the development of novel antivirals has become the need of the hour. Main protease (Mpro) has been an attractive target for antiviral drugs since it plays a vital role in polyprotein processing and virus maturation. Herein we report the discovery of a novel class of inhibitors against the SARS‐CoV‐2, bearing histidineα‐nitrile motif embedded on a simple dipeptide framework.In‐vitroandin‐silicostudies revealed that the histidineα‐nitrile motif envisioned to target the Mprocontributes to the inhibitory activity. Among a series of dipeptides synthesized featuring this novel structural motif, some dipeptides displayed strong viral reduction (EC50=0.48 μM) with a high selectivity index, SI>454.54. These compounds also exhibit strong binding energies in the range of −28.7 to −34.2 Kcal/mol. The simple dipeptide structural framework, amenable to quick structural variations, coupled with ease of synthesis from readily available commercial starting materials are the major attractive features of this novel class of SARS‐CoV‐2 inhibitors. The histidineα‐nitrile dipeptides raise the hope of discovering potent drug candidates based on this motif to fight the dreaded SARS‐CoV‐2.

     
    more » « less