Global challenges are complex and must be tackled in a holistic manner. Understanding and addressing them requires collaboration across disciplines, often uniting the humanities and social and natural sciences, to ask better questions and identify practical and revolutionary solutions. Universities can be excellent vehicles for transformational change as they educate the next generation of civically-motivated thinkers to create meaningful action and impact. Too often systemic, artificial barriers exist within these institutions that prevent meaningful transdisciplinary collaboration from succeeding. We recommend that universities identify grand challenges and foster a culture of cross-department collaboration with appropriate internal and external resources to enable broader impacts. Together, funders and institutional policymakers play a critical strategic role in fostering civic scientists and transdisciplinary researchers to solve multifaceted global problems.
more »
« less
How Does Strategic Communication Shape Transdisciplinary Collaboration? A Focus on Definitions, Audience, Expertise, and Ethical Praxis
Transdisciplinary collaboration offers great potential for meaningfully addressing complex problems related to climate change and social inequities. Communication shapes transdisciplinary collaboration in myriad ways, and interdisciplinary and rhetorical approaches to communication can help identify these influences as well as strategies to transform inequitable communication patterns. In this paper, we share results from an engaged and ethnographic research project focused on strategic communication in a large-scale transdisciplinary collaboration to develop environmental-DNA (eDNA) science for coastal resilience. In this context, definitions of eDNA, perspectives about communication, and constructions of audience and expertise shape the ways in which collaborators co-produce knowledge across disciplines and with diverse partners. Identifying relationships among strategic communication, knowledge co-production, and power enables the development of strategic collaborative practices, including asking questions as a means to identify and negotiate differences in definitions of eDNA and using participatory methods and anti-oppressive data management platforms for ethical praxis.
more »
« less
- Award ID(s):
- 1849227
- PAR ID:
- 10318294
- Date Published:
- Journal Name:
- Frontiers in Communication
- Volume:
- 7
- ISSN:
- 2297-900X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To pursue transdisciplinary education, bringing together different disciplinary perspectives is necessary. As two graduate researchers, in engineering technology and anthropology, on a National Science Foundation (NSF) Improving Undergraduate STEM Education research project, we want to embody and explore our role in the journey to pursue transdisciplinary education. Our familiarity with higher education as students, our different disciplinary backgrounds and lived experiences, and our training as an engineering technology educator and a social scientist contribute greatly to the advancement of understanding the project. Harnessing our combined expertise enables us to see collaborative co-teaching, group learning, and student engagement in new ways. Often transdisciplinary education research is approached from siloed disciplines or from a single perspective and not inclusive of graduate students' perspectives. We find ourselves working on a collaborative cross-college project between three different colleges, Business, Engineering Technology, and Liberal Arts, where faculty and students are co-teaching and co-learning in a series of design and innovation courses. A key element of this project is gathering and using stakeholder data from students, faculty, and administrators. Midway through our three-year project, the NSF project’s external reviewer highlighted the crucial value added of having graduate researchers looking at transforming higher education towards transdisciplinarity. With that in mind, we offer some guiding thoughts about collaborative research among graduate students and faculty from different academic disciplines. This includes tips on how we collaborated in coding, analysis, and data presentations. Using project examples, we will discuss how we used tools for collaboration such as NVivo Teams and Microsoft Teams; these platforms aided in contributing to the iterative research design of this project and research outputs. Our process was strengthened by active participation in project meetings with faculty, educational community events, and data review sessions to reach data consensus. We have noticed how transdisciplinarity can transform undergraduate learning and encourage cross-college faculty collaboration. We will reflect on the significance of collaboration at all levels of higher education. Furthermore, this experience has set us on the path to becoming transdisciplinary scholars ourselves.more » « less
-
Abstract Environmental DNA (eDNA) has revolutionized ecological research, particularly for biodiversity assessment in various environments, most notably aquatic media. Environmental DNA analysis allows for non‐invasive and rapid species detection across multiple taxonomic groups within a single sample, making it especially useful for identifying rare or invasive species. Due to dynamic hydrological processes, eDNA samples from running waters may represent biodiversity from broad contributing areas, which is convenient from a biomonitoring perspective but also challenging, as hydrological knowledge is required for meaningful biological interpretation. Hydrologists could also benefit from eDNA to address unsolved questions, particularly concerning water movement through catchments. While naturally occurring abiotic tracers have advanced our understanding of water age distribution in catchments, for example, current geochemical tracers cannot fully elucidate the timing and flow paths of water through landscapes. Conversely, biological tracers, owing to their immense diversity and interactions with the environment, could offer more detailed information on the sources and flow paths of water to the stream. The informational capacity of eDNA as a tracer, however, is determined by the ability to interpret the complex biological heterogeneity at a study site, which arguably requires both biological and hydrological expertise. As eDNA data has become increasingly available as part of biomonitoring campaigns, we argue that accompanying eDNA surveys with hydrological observations could enhance our understanding of both biological and hydrological processes; we identify opportunities, challenges, and needs for further interdisciplinary collaboration; and we highlight eDNA's potential as a bridge between hydrology and biology, which could foster both domains. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > MethodsWater and Life > Nature of Freshwater Ecosystemsmore » « less
-
Background: Human trafficking for sexual exploitation (referred to as sex trafficking) is a complex global challenge that causes harm and violates human rights. Most research has focused on victim-level harms and experiences, with limited understanding of the networks and business functions of trafficking operations. Empirical evidence is lacking on how to disrupt trafficking operations because it is difficult to study; it is hidden and dangerous, spans academic disciplinary boundaries, and necessitates ways of knowing that include lived experience. Collaborative approaches are needed, but there is limited research on methods to best build transdisciplinary teams. Aim: The aim of this study was to understand how to form a community-engaged transdisciplinary research team that combines qualitative and operations research with a survivor-centered advisory group. Methods: We conducted a qualitative meta-study of our team that is seeking to mathematically model sex trafficking operations. Data were collected from the minutes of 16 team meetings and a survey of 13 team members. Results: Analysis of meeting minutes surfaced four themes related to content and style of communication, one related to value statements, and one capturing intentional team building efforts. Survey results highlighted respect, trust, integrity, openness and asking and answering questions as key aspects of team building. Results show that an action research approach to team building, focused on trust and communication, fostered effective collaboration among social scientists, operations researchers, and survivors of trafficking. Conclusion: Team building, shared language, and trust are essential, yet often neglected, elements of team science. This meta-study provides important methodological insights on community engaged transdisciplinary team formation to tackle vexing social challenges.more » « less
-
There have been numerous demands for enhancements in the way undergraduate learning occurs today, especially at a time when the value of higher education continues to be called into question (The Boyer 2030 Commission, 2022). One type of demand has been for the increased integration of subjects/disciplines around relevant issues/topics—with a more recent trend of seeking transdisciplinary learning experiences for students (Sheets, 2016; American Association for the Advancement of Science, 2019). Transdisciplinary learning can be viewed as the holistic way of working equally across disciplines to transcend their own disciplinary boundaries to form new conceptual understandings as well as develop new ways in which to address complex topics or challenges (Ertas, Maxwell, Rainey, & Tanik, 2003; Park & Son, 2010). This transdisciplinary approach can be important as humanity’s problems are not typically discipline specific and require the convergence of competencies to lead to innovative thinking across fields of study. However, higher education continues to be siloed which makes the authentic teaching of converging topics, such as innovation, human-technology interactions, climate concerns, or harnessing the data revolution, organizationally difficult (Birx, 2019; Serdyukov, 2017). For example, working across a university’s academic units to collaboratively teach, or co-teach, around topics of convergence are likely to be rejected by the university systems that have been built upon longstanding traditions. While disciplinary expertise is necessary and one of higher education’s strengths, the structures and academic rigidity that come along with the disciplinary silos can prevent modifications/improvements to the roles of academic units/disciplines that could better prepare students for the future of both work and learning. The balancing of disciplinary structure with transdisciplinary approaches to solving problems and learning is a challenge that must be persistently addressed. These institutional challenges will only continue to limit universities seeking toward scaling transdisciplinary programs and experimenting with novel ways to enhance the value of higher education for students and society. This then restricts innovations to teaching and also hinders the sharing of important practices across disciplines. To address these concerns, a National Science Foundation Improving Undergraduate STEM Education project team, which is the topic of this paper, has set the goal of developing/implementing/testing an authentically transdisciplinary, and scalable educational model in an effort to help guide the transformation of traditional undergraduate learning to span academics silos. This educational model, referred to as the Mission, Meaning, Making (M3) program, is specifically focused on teaching the crosscutting practices of innovation by a) implementing co-teaching and co-learning from faculty and students across different academic units/colleges as well as b) offering learning experiences spanning multiple semesters that immerse students in a community that can nourish both their learning and innovative ideas. As a collaborative initiative, the M3 program is designed to synergize key strengths of an institution’s engineering/technology, liberal arts, and business colleges/units to create a transformative undergraduate experience focused on the pursuit of innovation—one that reaches the broader campus community, regardless of students’ backgrounds or majors. Throughout the development of this model, research was conducted to help identify institutional barriers toward creating such a cross-college program at a research-intensive public university along with uncovering ways in which to address these barriers. While data can show how students value and enjoy transdisciplinary experiences, universities are not likely to be structured in a way to support these educational initiatives and they will face challenges throughout their lifespan. These challenges can result from administration turnover whereas mutual agreements across colleges may then vanish, continued disputes over academic territory, and challenges over resource allotments. Essentially, there may be little to no incentives for academic departments to engage in transdisciplinary programming within the existing structures of higher education. However, some insights and practices have emerged from this research project that can be useful in moving toward transdisciplinary learning around topics of convergence. Accordingly, the paper will highlight features of an educational model that spans disciplines along with the workarounds to current institutional barriers. This paper will also provide lessons learned related to 1) the potential pitfalls with educational programming becoming “un-disciplinary” rather than transdisciplinary, 2) ways in which to incentivize departments/faculty to engage in transdisciplinary efforts, and 3) new structures within higher education that can be used to help faculty/students/staff to more easily converge to increase access to learning across academic boundaries.more » « less
An official website of the United States government

