The amygdala is a sensory integration center that plays an important role in emotional learning, behavior, and motivation. Cannabinoid signaling in the amygdala modulates aspects of anxiety, aggression, and fear in rodents via cannabinoid receptor 1, however little is known about cannabinoid signaling in the amygdala of humans and nonhuman primates. Primates are behaviorally diverse, with closely related species often displaying distinct social styles characterized by varying degrees of social tolerance and agonistic tendencies. Such behavioral differences are thought to be associated with neurochemical differences among species. Given what is known about the functional role of cannabinoid signaling in the amygdala, we tested whether relatively tolerant species, such as humans, bonobos, and marmosets, possess relatively higher cannabinoid receptor 1-immunoreactive (CB1R-ir) axon density in the basolateral amygdala. We used immunohistochemistry and stereological methods to compare CB1R-ir axon density among 47 primates representing nine species: humans (n=5), chimpanzees (n=6), bonobos (n=2), baboons (n=6), rhesus macaques (n=5), Japanese macaques (n=6), pigtail macaques (n=6), marmosets (n=5), and capuchins (n=6). The basolateral amygdala is comprised of the lateral, basal, and accessory basal nuclei. Stereological data for each nucleus was collected separately. After ruling out sex differences within each species, we used repeated measures ANOVA to evaluate species differences. The interaction (F16,76 = 5.061, p<.001) and main effects of species (F8,38 = 8.007, p<.001) and area (F2,76 = 59.616, p<.001) were all significant. However, the observedspecies differences did not support our hypothesis related to social tolerance nor did the data conform to a phylogenetic pattern. Instead, we found that while some closely related species differed from each other in a nucleus-dependent manner, some distantly related species shared unexpected similarities. Our results highlight the need for additional comparative work on the cannabinoid system from a molecular and genetic perspective. We discuss the implications of our observations with special focus on primate brain evolution and its connection to primate social style.
more »
« less
Japanese and rhesus macaques differ in amygdala cannabinoid 1 receptor-immunoreactive axon density (P078.09)
Endogenous and exogenous cannabinoids signal through the cannabinoid 1 receptor (CB1R) to modulate various aspects of social behavior, including aggression and anxiety. In rodents and primates, CB1R expression in the basolateral amygdala is dense and cannabinoid signaling in this region has been reported to influence social behavior. Little is known about how endocannabinoid signaling in the amygdala contributes to primate social diversity. The behaviorally diverse and species-rich cercopithecoid monkey genus Macaca is an ideal model for addressing this topic. Japanese (Macaca fuscata) and rhesus macaques (M. mulatta) display similar social styles in some respects; however, there is evidence to suggest they differ in their stress response, amygdala structure, and monoaminergic signaling. To further assess the molecular basis of social style in Japanese and rhesus macaques, we used immunohistochemistry and stereological methods to compare CB1R-immunoreactive (CB1R-ir) axon density in the basolateral amygdala, which is comprised of the lateral, basal, and accessory basal nuclei. Our study sample included 6 Japanese and 5 rhesus macaques. Repeated-measures ANOVAs were used to evaluate species differences, with amygdala region as the within-subjects measure and species as the between-subjects factor. This revealed significant main effects for species and area (p values < 0.05) with no interaction. Post hoc tests revealed higher CB1R-ir axon density in the basal and accessory basal nuclei of rhesus macaques compared to Japanese macaques. Our results suggest that CB1R-mediated signaling in the lateral nucleus of the amygdala is comparable between the two species, while the differences we observed in the basal and accessory basal nuclei may contribute to the nuanced behavioral differences observed between them.
more »
« less
- Award ID(s):
- 1846201
- PAR ID:
- 10318332
- Date Published:
- Journal Name:
- Abstracts Society for Neuroscience
- ISSN:
- 0190-5295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A comparison of cell density and serotonergic innervation of the amygdala among four macaque speciesAbstract The genusMacacais an ideal model for investigating the biological basis of primate social behavior from an evolutionary perspective. A significant amount of behavioral diversity has been reported among the macaque species, but little is known about the neural substrates that support this variation. The present study compared neural cell density and serotonergic innervation of the amygdala among four macaque species using histological and immunohistochemical methods. The species examined included rhesus (Macaca mulatta), Japanese (M. fuscata), pigtailed (M. nemestrina), and moor macaques (M. maura). We anticipated that the more aggressive rhesus and Japanese macaques would have lower serotonergic innervation within the amygdala compared to the more affiliative pigtailed and moor macaques. In contrast to our prediction, pigtailed macaques had higher serotonergic innervation than Japanese and moor macaques in the basal and central amygdala nuclei when controlling for neuron density. Our analysis of neural cell populations revealed that Japanese macaques possess significantly higher neuron and glia densities relative to the other three species, however we observed no glia‐to‐neuron ratio differences among species. The results of this study revealed serotonergic innervation and cell density differences among closely related macaque species, which may play a role in modulating subtle differences in emotional processing and species‐typical social styles.more » « less
-
Gojobori, Takashi (Ed.)Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees ( Pan troglodytes ) and rhesus macaques ( Macaca mulatta ). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.more » « less
-
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both social and nonsocial contexts. Furthermore, the present study is the first to quantify the expression of phosphorylated ribosomal protein S6 (PS6), a proxy for neural response, in the Betta telencephalon. Here, we assessed male Betta behavior across a suite of tasks and found that response to a mirror, but not neophilia (a novel object) nor anxiety (scototaxis), predicted behavior in a social competition. To then explore the cognitive aspects of social competition, we exposed Betta to either a familiar or novel opponent and compared their competitive behavior as well as their neural responses in the teleost homologs of the hippocampus, basolateral amygdala, and lateral septum. We did not detect any differences between familiar-exposed and novel-exposed individuals, but by implementing the first use of a habituation–dishabituation competition design in a study of Betta, we were able to observe remarkable consistency in competitive outcomes across repeated exposures. Taken together, the present study lays the groundwork for expanding the use of Betta to explore integrative and multidimensional questions of social cognition.more » « less
-
Abstract Taxonomic classification is important for understanding the natural world, yet current methods for species assessment often focus on craniodental morphology rather than the entire skeleton. Moreover, it is currently unknown how much variation could, or should, exist intragenerically. Here, we tested whether taxonomy can be accurately predicted based on patterns of morphological variation in macaques (H1) and whether postcranial bones reflect subgeneric macaque taxonomy similarly, or better, than the cranium (H2). Data included 3D scans of cranial and postcranial bones for eight macaque species (Macaca arctoides,Macaca fascicularis,Macaca fuscata,Macaca mulatta,Macaca nemestrina,Macaca nigra,Macaca radiata, andMacaca sylvanus). Fixed anatomical and semilandmarks were applied to scans of eight skeletal elements (crania = 45; mandible = 31; scapula = 66; humerus = 38; radius = 33; os coxa = 28; femur = 40; tibia = 40). For each skeletal element, regression analyses were performed to minimize the effects of sexual dimorphism. Between‐groups principal components analysis was used to visualize the major patterns of among‐species morphological variation, while the strength of correct taxon classification was measured with discriminant function analysis. Results suggested accepting the alternate hypothesis that different macaque species can be distinguished morphologically. Both cranial and many postcranial elements appeared to possess a taxonomic signal, and the limb bones—especially the upper limb—are reported to be more useful for taxonomic assessment than previously realized. Theoretically, certain behaviors and/or ecogeographical factors, as well as phylogeny, influenced skeletal morphology in macaques, likely contributing to taxonomic distinctions among different species.more » « less
An official website of the United States government

