skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: RacketStore: measurements of ASO deception in Google play via mobile and app usage
Online app search optimization (ASO) platforms that provide bulk installs and fake reviews for paying app developers in order to fraudulently boost their search rank in app stores, were shown to employ diverse and complex strategies that successfully evade state-of-the-art detection methods. In this paper we introduce RacketStore, a platform to collect data from Android devices of participating ASO providers and regular users, on their interactions with apps which they install from the Google Play Store. We present measurements from a study of 943 installs of RacketStore on 803 unique devices controlled by ASO providers and regular users, that consists of 58,362,249 data snapshots collected from these devices, the 12,341 apps installed on them and their 110,511,637 Google Play reviews. We reveal significant differences between ASO providers and regular users in terms of the number and types of user accounts registered on their devices, the number of apps they review, and the intervals between the installation times of apps and their review times. We leverage these insights to introduce features that model the usage of apps and devices, and show that they can train supervised learning algorithms to detect paid app installs and fake reviews with an F1-measure of 99.72% (AUC above 0.99), and detect devices controlled by ASO providers with an F1-measure of 95.29% (AUC = 0.95). We discuss the costs associated with evading detection by our classifiers and also the potential for app stores to use our approach to detect ASO work with privacy.  more » « less
Award ID(s):
2013671
PAR ID:
10318354
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Internet Measurement Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Black Hat App Search Optimization (ASO) in the form of fake reviews and sockpuppet accounts, is prevalent in peer-opinion sites, e.g., app stores, with negative implications on the digital and real lives of their users. To detect and filter fraud, a growing body of research has provided insights into various aspects of fraud posting activities, and made assumptions about the working procedures of the fraudsters from online data. However, such assumptions often lack empirical evidence from the actual fraud perpetrators. To address this problem, in this paper, we present results of both a qualitative study with 18 ASO workers we recruited from 5 freelancing sites, concerning activities they performed on Google Play, and a quantitative investigation with fraud-related data collected from other 39 ASO workers. We reveal findings concerning various aspects of ASO worker capabilities and behaviors, including novel insights into their working patterns, and supporting evidence for several existing assumptions. Further, we found and report participant-revealed techniques to bypass Google-imposed verifications, concrete strategies to avoid detection, and even strategies that leverage fraud detection to enhance fraud efficacy. We report a Google site vulnerability that enabled us to infer the mobile device models used to post more than 198 million reviews in Google Play, including 9,942 fake reviews. We discuss the deeper implications of our findings, including their potential use to develop the next generation fraud detection and prevention systems. 
    more » « less
  2. Cloud backends provide essential features to the mobile app ecosystem, such as content delivery, ad networks, analytics, and more. Unfortunately, app developers often disregard or have no control over prudent security practices when choosing or managing these services. Our preliminary study of the top 5,000 Google Play Store free apps identified 983 instances of N-day and 655 instances of 0-day vulnerabilities spanning across the software layers (OS, software services, communication, and web apps) of cloud backends. The mobile apps using these cloud backends represent between 1M and 500M installs each and can potentially affect hundreds of thousands of users. Further, due to the widespread use of third-party SDKs, app developers are often unaware of the backends affecting their apps and where to report vulnerabilities. This paper presents SkyWalker, a pipeline to automatically vet the backends that mobile apps contact and provide actionable remediation. For an input APK, SkyWalker extracts an enumeration of backend URLs, uses remote vetting techniques to identify software vulnerabilities and responsible parties, and reports mitigation strategies to the app developer. Our findings suggest that developers and cloud providers do not have a clear understanding of responsibilities and liabilities in regards to mobile app backends that leave many vulnerabilities exposed. 
    more » « less
  3. null (Ed.)
    Residential proxy has emerged as a service gaining popularity recently, in which proxy providers relay their customers’ network traffic through millions of proxy peers under their control. We find that many of these proxy peers are mobile devices, whose role in the proxy network can have significant security implications since mobile devices tend to be privacy and resource-sensitive. However, little effort has been made so far to understand the extent of their involvement, not to mention how these devices are recruited by the proxy network and what security and privacy risks they may pose. In this paper, we report the first measurement study on the mobile proxy ecosystem. Our study was made possible by a novel measurement infrastructure, which enabled us to identify proxy providers, to discover proxy SDKs (software development kits), to detect Android proxy apps built upon the proxy SDKs, to harvest proxy IP addresses, and to understand proxy traffic. The information collected through this infrastructure has brought to us new understandings of this ecosystem and important security discoveries. More specifically, 4 proxy providers were found to offer app developers mobile proxy SDKs as a competitive app monetization channel, with $50K per month per 1M MAU (monthly active users). 1,701 Android APKs (belonging to 963 Android apps) turn out to have integrated those proxy SDKs, with most of them available on Google Play with at least 300M installations in total. Furthermore, 48.43% of these APKs are flagged by at least 5 anti-virus engines as malicious, which could explain why 86.60% of the 963 Android apps have been removed from Google Play by Oct 2019. Besides, while these apps display user consent dialogs on traffic relay, our user study indicates that the user consent texts are quite confusing. We even discover a proxy SDK that stealthily relays traffic without showing any notifications. We also captured 625K cellular proxy IPs, along with a set of suspicious activities observed in proxy traffic such as ads fraud. We have reported our findings to affected parties, offered suggestions, and proposed the methodologies to detect proxy apps and proxy traffic. 
    more » « less
  4. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  5. Mobile super apps are revolutionizing mobile computing by offering diverse services through integrated "miniapps'', creating comprehensive ecosystems akin to app stores like Google Play and Apple's App Store. While these platforms, such as WeChat, Alipay, and TikTok, enhance user convenience and functionality, they also raise significant security and privacy concerns due to the vast amounts of user data they handle. In response, the Workshop on Secure and Trustworthy Superapps (SaTS 2024) aims to address these critical issues by fostering collaboration among researchers and practitioners to explore solutions that protect users and enhance security within the super app landscape. 
    more » « less