Global climate models project that New Mexico's Upper Rio Grande watershed is expected to become more arid and experience greater climatic and hydrological extremes in the next 50 years. The resulting transitions will have dramatic implications for downstream water users. The Upper Rio Grande and its tributaries provide water to about half of New Mexico's population, including the downstream communities of Albuquerque and Santa Fe, and surrounding agricultural areas. In the absence of formal climate adaptation strategies, informal governance arrangements are emerging to facilitate watershed climate adaptation strategies, including fuel treatments and stream remediation. One example is the Rio Grande Water Fund (RGWF), a collaborative effort coordinating work to protect storage, delivery, and quality of Rio Grande water through landscape-scale forest restoration treatments in tributary forested watersheds. This article examines the RGWF as one example of an emerging adaptation strategy that is working within—and beyond—existing legal and policy frameworks to accomplish more collaborative efforts across jurisdictional lines and administrative barriers. We identified ten (10) key characteristics of adaptive governance from the relevant literature and then applied them to the RGWF's experience in the watershed to date. Key findings include: (1) the RGWF's approach as a collaborative network created the right level of formality while also keeping flexibility in its design, (2) a scalar fit to the environmental challenge built social capital and investment in its work, (3) leadership from key stakeholders leveraged opportunities in the watershed to create and maintain stability, and (4) use of adaptive management and peer review processes built capacity by creating the feedback loops necessary to inform future work.
more »
« less
Model my watershed: an investigation into the role of big data, technology, and models in promoting student interest in watershed action
- Award ID(s):
- 1417527
- PAR ID:
- 10318355
- Date Published:
- Journal Name:
- The Journal of Environmental Education
- Volume:
- 52
- Issue:
- 6
- ISSN:
- 0095-8964
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The understory layer is complex and includes groups of stems with distinctly different chances of survival and recruitment to the sapling size class. We explored how calcium amendment has impacted the trajectory of the seedling bank at Hubbard Brook Experimental Forest. The density of all tree stems in the seedling bank in 2018 (19 years after treatment) was greater in CAL (Watershed 1; calcium treatment) than REF (Waterhsed 6; reference) and beech was more abundant than sugar maple in both watersheds. In terms of relative abundance, the treatment had the opposite effects on the two species: the relative density of sugar maple was significantly greater in CAL than REF while the relative density of beech was significantly less. In terms of beech stem origin, Beech sprouts were more abundant than seedlings on both watersheds; however, beech stems of seed origin were more abundant on CAL (mean±1SE: 4.06±0.49 seedlings m-2) than REF (2.98±0.42), while sprouts were fewer (CAL: 14.4±1.30; REF: 20.5±1.47) resulting in the seedling to sprout ratio on CAL (1:3.5) being half that on REF (1:7). The influence on the seedling bank on future composition of these forests remains to be seen. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

