skip to main content

This content will become publicly available on December 17, 2022

Title: Insights from a comprehensive study of Trypanosoma cruzi: A new mitochondrial clade restricted to North and Central America and genetic structure of TcI in the region
More than 100 years since the first description of Chagas Disease and with over 29,000 new cases annually due to vector transmission (in 2010), American Trypanosomiasis remains a Neglected Tropical Disease (NTD). This study presents the most comprehensive Trypanosoma cruzi sampling in terms of geographic locations and triatomine species analyzed to date and includes both nuclear and mitochondrial genomes. This addresses the gap of information from North and Central America. We incorporate new and previously published DNA sequence data from two mitochondrial genes, Cytochrome oxidase II (COII) and NADH dehydrogenase subunit 1 (ND1). These T . cruzi samples were collected over a broad geographic range including 111 parasite DNA samples extracted from triatomines newly collected across North and Central America, all of which were infected with T . cruzi in their natural environment. In addition, we present parasite reduced representation (Restriction site Associated DNA markers, RAD-tag) genomic nuclear data combined with the mitochondrial gene sequences for a subset of the triatomines (27 specimens) collected from Guatemala and El Salvador. Our mitochondrial phylogenetic reconstruction revealed two of the major mitochondrial lineages circulating across North and Central America, as well as the first ever mitochondrial data for TcBat from a triatomine collected more » in Central America. Our data also show that within mtTcIII, North and Central America represent an independent, distinct clade from South America, named here as mtTcIII NA-CA , geographically restricted to North and Central America. Lastly, the most frequent lineage detected across North and Central America, mtTcI, was also an independent, distinct clade from South America, noted as mtTcI NA-CA . Furthermore, nuclear genome data based on Single Nucleotide Polymorphism (SNP) showed genetic structure of lineage TcI from specimens collected in Guatemala and El Salvador supporting the hypothesis that genetic diversity at a local scale has a geographical component. Our multiscale analysis contributes to the understanding of the independent and distinct evolution of T . cruzi lineages in North and Central America regions. « less
Authors:
; ; ; ; ; ; ;
Editors:
Dutra, Walderez O.
Award ID(s):
1759906
Publication Date:
NSF-PAR ID:
10318363
Journal Name:
PLOS Neglected Tropical Diseases
Volume:
15
Issue:
12
ISSN:
1935-2735
Sponsoring Org:
National Science Foundation
More Like this
  1. Species that went extinct prior to the genomic era are typically out-of-reach for modern phylogenetic studies. We refer to these as “Alexandrian” extinctions, after the lost library of the ancient world. This is particularly limiting for conservation studies, as genetic data for such taxa may be key to understand extinction threats and risks, the causes of declines, and inform management of related, extant populations. Fortunately, continual advances in biochemistry and DNA sequencing offer increasing ability to recover DNA from historical museum specimens, including fluid-preserved natural history collections. Here, we report on success in recovering nuclear and mitochondrial data from the apparently-extinct subspecies Desmognathus fuscus carri Neill, 1951, a plethodontid salamander from spring runs in central Florida. The two specimens are 50 years old and were likely preserved in unbuffered formalin, but application of a recently derived extraction procedure yielded usable DNA and partially successful Anchored Hybrid Enrichment sequencing. These data suggest that the populations of D. f. carri from peninsular Florida are conspecific with the D. auriculatus A lineage as suggested by previous authors, but likely represented an ecogeographically distinct genetic segment that has now been lost. Genetic data from this Alexandrian extinction thus confirm the geographic extent of populationmore »declines and extirpations as well as their ecological context, suggesting a possibly disproportionate loss from sandy-bottom clearwater streams compared to blackwater swamps. Success of these methods bodes well for large-scale application to fluid-preserved natural history specimens from relevant historical populations, but the possibility of significant DNA damage and related sequencing errors in additional hurdle to overcome.« less
  2. Kubatko, Laura (Ed.)
    Abstract Evidence from natural systems suggests that hybridization between animal species is more common than traditionally thought, but the overall contribution of introgression to standing genetic variation within species remains unclear for most animal systems. Here, we use targeted exon capture to sequence thousands of nuclear loci and complete mitochondrial genomes from closely related chipmunk species in the Tamias quadrivittatus group that are distributed across the Great Basin and the central and southern Rocky Mountains of North America. This recent radiation includes six overlapping, ecologically distinct species (Tamias canipes, Tamias cinereicollis, Tamias dorsalis, T. quadrivittatus, Tamias rufus, and Tamias umbrinus) that show evidence for widespread introgression across species boundaries. Such evidence has historically been derived from a handful of markers, typically focused on mitochondrial loci, to describe patterns of introgression; consequently, the extent of introgression of nuclear genes is less well characterized. We conducted a series of phylogenomic and species-tree analyses to resolve the phylogeny of six species in this group. In addition, we performed several population-genomic analyses to characterize nuclear genomes and infer coancestry among individuals. Furthermore, we used emerging quartets-based approaches to simultaneously infer the species tree (SVDquartets) and identify introgression (HyDe). We found that, in spite ofmore »rampant introgression of mitochondrial genomes between some species pairs (and sometimes involving up to three species), there appears to be little to no evidence for nuclear introgression. These findings mirror other genomic results where complete mitochondrial capture has occurred between chipmunk species in the absence of appreciable nuclear gene flow. The underlying causes of recurrent massive cytonuclear discordance remain unresolved in this group but mitochondrial DNA appears highly misleading of population histories as a whole. Collectively, it appears that chipmunk species boundaries are largely impermeable to nuclear gene flow and that hybridization, while pervasive with respect to mtDNA, has likely played a relatively minor role in the evolutionary history of this group. [Cytonuclear discordance; hyridization; introgression, phylogenomics; SVDquartets; Tamias.]« less
  3. Abstract

    Conservation efforts rely on robust taxonomic assessments that should be based on critical assessment of interspecific boundaries, infraspecific variation, and potentially distinctive peripheral populations. The meadow vole (Microtus pennsylvanicus) is widely distributed across North America, including 28 morphologically defined subspecies and numerous isolated populations. Because some subspecies are of high conservation concern, we examined geographic variation across the range of the species to test existing infraspecific taxonomy in terms of local and regional diversification. We sequenced mitochondrial DNA (mtDNA) from 20 subspecies of M. pennsylvanicus and contextualized infraspecific variation through comparison of pairwise genetic distances derived from an extended data set of 63 species of Microtus. We found strong support for at least three divergent clades within M. pennsylvanicus, with observed intraspecific clade divergence exceeding that between several pairwise comparisons of sister species within Microtus. Six nuclear genes were then sequenced to test the validity of mtDNA structure and to further evaluate the possibility of cryptic, species-level diversity using Bayes factor species delimitation (BFD) analyses. BFD consistently and decisively supported multiple species based on the multilocus approach. We propose that taxonomic revision of the meadow vole is required, with the eastern clade now identified as M. pennsylvanicus (Ord 1815),more »the western clade as M. drummondii (Audubon and Bachman 1853), and the coastal Florida clade as M. dukecampbelli (Woods, Post, and Kilpatrick 1982). We suggest that such an arrangement would more closely reflect evolutionary history and provide critical context for further examination of distinctive southern peripheral populations that harbor novel evolutionary legacies and adaptive potential.

    « less
  4. Coniochaeta (Coniochaetaceae, Ascomycota) is a diverse genus that includes a striking richness of undescribed species with endophytic lifestyles, especially in temperate and boreal plants and lichens. These endophytes frequently represent undescribed species that can clarify evolutionary relationships and trait evolution within clades of previously classified fungi. Here we extend the geographic, taxonomic, and host sampling presented in a previous analysis of the clade containing Coniochaeta endophytica, a recently described species occurring as an endophyte from North America; and C. prunicola, associated with necroses of stonefruit trees in South Africa. Our multi-locus analysis and examination of metadata for endophyte strains housed in the Robert L. Gilbertson Mycological Herbarium at the University of Arizona (ARIZ) (1) expands the geographic range of C. endophytica across a wider range of the USA than recognized previously; (2) shows that the ex-type of C. prunicola (CBS 120875) forms a well-supported clade with endophytes of native hosts in North Carolina and Michigan, USA; (3) reveals that the ex-paratype for C. prunicola (CBS 121445) forms a distinct clade with endophytes from North Carolina and Russia, is distinct morphologically from the other taxa considered here, and is described herein as Coniochaeta lutea; and (4) describes a new species, Coniochaetamore »palaoa, here identified as an endophyte of multiple plant lineages in the highlands and piedmont of North Carolina. Separation of CBS 120875 and CBS 121445 into C. prunicola sensu stricto and C. lutea is consistent with previously described genomic differences between these isolates, and morphological and functional differences among the four species (C. endophytica, C. prunicola, C. palaoa, and C. lutea) underscore the phylogenetic relationships described here. The resolving power of particular loci and the emerging perspective on the host- and geographic range of Coniochaeta and the C. endophytica / C. prunicola clade are discussed.« less
  5. Dusky salamanders (Desmognathus) constitute a large, species-rich group within the family Plethodontidae, and though their systematic relationships have been addressed extensively, most studies have centered on particular species complexes and therefore offer only piecemeal phylogenetic perspective on the genus. Recent work has revealed Desmognathus to be far more clade rich—35 reciprocally monophyletic clades versus 22 recognized species—than previously imagined, results that, in turn, provide impetus for additional survey effort within clades and across geographic areas thus far sparsely sampled. We conceived and implemented a sampling regime combining level IV ecoregions and independent river drainages to yield a geographic grid for comprehensive recovery of all genealogically exclusive clades. We sampled over 550 populations throughout the distribution of Desmognathus in the eastern United States of America and generated mitochondrial DNA sequence data (mtDNA; 1,991 bp) for 536 specimens. A Bayesian phylogenetic reconstruction of the resulting haplotypes revealed forty-five reciprocally monophyletic clades, eleven of which have never been included in a comprehensive phylogenetic reconstruction, and an additional three not represented in any molecular systematic survey. Although general limitations associated with mtDNA data preclude new species delineation, we profile each of the 45 clades and assign names to 10 new clades (following a protocolmore »for previous clade nomenclature). We also redefine several species complexes and erect new informal species complexes. Our dataset, which contains topotypic samples for nearly every currently recognized species and most synonymies, will offer a robust framework for future efforts to delimit species within Desmognathus.« less