skip to main content


Title: The Regulation of Plant Vegetative Phase Transition and Rejuvenation: miRNAs, a Key Regulator
In contrast to animals, adult organs in plants are not formed during embryogenesis but generated from meristematic cells as plants advance through development. Plant development involves a succession of different phenotypic stages and the transition between these stages is termed phase transition. Phase transitions need to be tightly regulated and coordinated to ensure they occur under optimal seasonal, environmental conditions. Polycarpic perennials transition through vegetative stages and the mature, reproductive stage many times during their lifecycles and, in both perennial and annual species, environmental factors and culturing methods can reverse the otherwise unidirectional vector of plant development. Epigenetic factors regulating gene expression in response to internal cues and external (environmental) stimuli influencing the plant’s phenotype and development have been shown to control phase transitions. How developmental and environmental cues interact to epigenetically alter gene expression and influence these transitions is not well understood, and understanding this interaction is important considering the current climate change scenarios, since epigenetic maladaptation could have catastrophic consequences for perennial plants in natural and agricultural ecosystems. Here, we review studies focusing on the epigenetic regulators of the vegetative phase change and highlight how these mechanisms might act in exogenously induced plant rejuvenation and regrowth following stress.  more » « less
Award ID(s):
1656380
NSF-PAR ID:
10318404
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Epigenomes
Volume:
5
Issue:
4
ISSN:
2075-4655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Vegetative leaves in Arabidopsis are classified as either juvenile leaves or adult leaves based on their specific traits, such as leaf shape and the presence of abaxial trichomes. The timing of the juvenile-to-adult phase transition during vegetative development, called the vegetative phase change, is a critical decision for plants, as this transition is associated with crop yield, stress responses, and immune responses. Juvenile leaves are characterized by high levels of miR156/157, and adult leaves are characterized by high levels of miR156/157 targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. The discovery of this miR156/157-SPL module provided a critical tool for elucidating the complex regulation of the juvenile-to-adult phase transition in plants. In this review, we discuss how the traits of juvenile leaves and adult leaves are determined by the miR156/157-SPL module and how different factors, including embryonic regulators, sugar, meristem regulators, hormones, and epigenetic proteins are involved in controlling the juvenile-to-adult phase transition, focusing on recent insights into vegetative phase change. We also highlight outstanding questions in the field that need further investigation. Understanding how vegetative phase change is regulated would provide a basis for manipulating agricultural traits under various conditions. 
    more » « less
  2. Summary

    Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genusPopulus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagatedin vitro, leaving the natural progression of this process unknown.

    We examined developmental morphology of seed‐grown andin vitroderivedPopulus tremula × alba(clone 717‐1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC.

    In seed‐grown plants, most traits changed from node‐to‐node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over‐expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering ofPopulusis one of these miR156‐regulated traits.

    Vegetative development in plants grown from culture mirrored that of seed‐grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.

     
    more » « less
  3. Abstract

    Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.

     
    more » « less
  4. Summary

    Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green‐to‐mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood.

    We investigated the function of the transcriptional regulatorVviNAC33by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP‐seq) approach combined with transcriptomic data.

    We demonstrated that VviNAC33 induces leaf de‐greening, inhibits organ growth and directly activates the expression ofSTAY‐GREEN PROTEIN 1(SGR1), which is involved in Chl and photosystem degradation, andAUTOPHAGY 8f(ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibitsAUXIN EFFLUX FACILITATOR PIN1,RopGEF1andATP SYNTHASE GAMMA CHAIN 1T(ATPC1), which are involved in photosystem II integrity and activity.

    Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative‐to‐mature phase transition.

     
    more » « less
  5. ABSTRACT The African trypanosome has evolved mechanisms to adapt to changes in nutrient availability that occur during its life cycle. During transition from mammalian blood to insect vector gut, parasites experience a rapid reduction in environmental glucose. Here we describe how pleomorphic parasites respond to glucose depletion with a focus on parasite changes in energy metabolism and growth. Long slender bloodstream form parasites were rapidly killed as glucose concentrations fell, while short stumpy bloodstream form parasites persisted to differentiate into the insect-stage procyclic form parasite. The rate of differentiation was lower than that triggered by other cues but reached physiological rates when combined with cold shock. Both differentiation and growth of resulting procyclic form parasites were inhibited by glucose and nonmetabolizable glucose analogs, and these parasites were found to have upregulated amino acid metabolic pathway component gene expression. In summary, glucose transitions from the primary metabolite of the blood-stage infection to a negative regulator of cell development and growth in the insect vector, suggesting that the hexose is not only a key metabolic agent but also an important signaling molecule. IMPORTANCE As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite. 
    more » « less