skip to main content


Title: Inverse scattering transform for the focusing nonlinear Schrödinger equation with counterpropagating flows
Abstract

The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed.

 
more » « less
Award ID(s):
2009487
NSF-PAR ID:
10454248
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
146
Issue:
2
ISSN:
0022-2526
Page Range / eLocation ID:
p. 371-439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonlocal reverse space‐time Sine/Sinh‐Gordon type equations were recently introduced. They arise from a remarkably simple nonlocal reduction of the well‐known AKNS scattering problem, hence, they constitute an integrable evolution equations. Furthermore, the inverse scattering transform (IST) for rapidly decaying data was also constructed. In this paper, the IST for these novel nonlocal equations corresponding to nonzero boundary conditions (NZBCs) at infinity is presented. The NZBC problem is more complex due to the intricate branching structure of the associated linear eigenfunctions. Two cases are analyzed, which correspond to two different values of the phase at infinity. Special soliton solutions are discussed and explicit 1‐soliton and 2‐soliton solutions are found. Both spatially independent and spatially dependent boundary conditions are considered.

     
    more » « less
  2. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  3. Abstract

    We consider the use of rational basis functions to compute the scattering and inverse scattering transforms associated with the AKNS (Ablowitz–Kaup–Newell–Segur) system. The proposed numerical forward scattering transform computes the solution of the AKNS system that is valid on the entire real axis and thereby computes a reflection coefficient at a point by solving a single linear system. The proposed numerical inverse scattering transform makes use of a novel improvement in the rational function approach to the oscillatory Cauchy operator, enabling the efficient solution of certain Riemann–Hilbert problems without contour deformations. The latter development enables access to high‐precision computations and this is demonstrated on the inverse scattering transform for the one‐dimensional Schrödinger operator with a potential.

     
    more » « less
  4. Abstract

    We formulate the inverse spectral theory of infinite gap Hill’s operators with bounded periodic potentials as a Riemann–Hilbert problem on a typically infinite collection of spectral bands and gaps. We establish a uniqueness theorem for this Riemann–Hilbert problem, which provides a new route to establishing unique determination of periodic potentials from spectral data. As the potentials evolve according to the Korteweg–de Vries Equation (KdV) equation, we use integrability to derive an associated Riemann–Hilbert problem with explicit time dependence. Basic principles from the theory of Riemann–Hilbert problems yield a new characterization of spectra for periodic potentials in terms of the existence of a solution to a scalar Riemann–Hilbert problem, and we derive a similar condition on the spectrum for the temporal periodicity for an evolution under the KdV equation.

     
    more » « less
  5. Abstract

    The semiclassical (small dispersion) limit of the focusing nonlinear Schrödinger equation with periodic initial conditions (ICs) is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising from a certain class of ICs, referred to as “periodic single‐lobe” potentials, share the same qualitative features, which also coincide with those of solutions arising from localized ICs. The spectrum of the associated scattering problem in each of these cases is then numerically computed, and it is shown that such spectrum is confined to the real and imaginary axes of the spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging from the input have zero velocity, and form a coherent nonlinear condensate. Finally, by employing a formal Wentzel‐Kramers‐Brillouin expansion for the scattering eigenfunctions, asymptotic expressions for the number and location of the bands and gaps in the spectrum are obtained, as well as corresponding expressions for the relative band widths and the number of “effective solitons.” These results are shown to be in excellent agreement with those from direct numerical computation of the eigenfunctions. In particular, a scaling law is obtained showing that the number of effective solitons is inversely proportional to the small dispersion parameter.

     
    more » « less