skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Predicting Changes in the Land Monsoon Rainfall a Decade in Advance
Predictions of changes of the land monsoon rainfall (LMR) in the coming decades are of vital importance forsuccessful sustainable economic development. Current dynamic models, though, have shown little skill in thedecadal prediction of the Northern Hemisphere (NH) LMR (NHLMR). The physical basis and predictability forsuch predictions remain largely unexplored. Decadal change of the NHLMR reflects changes in the total NHcontinental precipitation, tropical general circulation, and regional land monsoon rainfall over northern Africa,India, East Asia, and North America. Using observations from 1901 to 2014 and numerical experiments, it isshown that the decadal variability of the NHLMR is rooted primarily in (i) the north–south hemispheric thermalcontrast in the Atlantic–Indian Ocean sector measured by the North Atlantic–south Indian Ocean dipole(NAID) sea surface temperature (SST) index and (ii) an east–west thermal contrast in the Pacific measured by anextended El Niño–Southern Oscillation (XEN) index. Results from a 500-yr preindustrial control experimentdemonstrate that the leading mode of decadal NHLMR and the associated NAID and XEN SST anomalies maybe largely an internal mode of Earth’s climate system, although possibly modified by natural and anthropogenicexternal forcing. A 51-yr, independent forward-rolling decadal hindcast was made with a hybrid dynamic con-ceptual model and using the NAID index predicted by a multiclimate model ensemble. The results demonstratethat the decadal changes in the NHLMR can be predicted approximately a decade in advance with significantskills, opening a promising way forward for decadal predictions of regional land monsoon rainfall worldwide.  more » « less
Award ID(s):
1638256
PAR ID:
10318664
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of climate
Volume:
31
Issue:
9
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less
  2. Abstract Decadal variability in the North Atlantic Ocean impacts regional and global climate, yet changes in internal decadal variability under anthropogenic radiative forcing remain largely unexplored. Here we use the Community Earth System Model 2 Large Ensemble under historical and the Shared Socioeconomic Pathway 3-7.0 future radiative forcing scenarios and show that the ensemble spread in northern North Atlantic sea surface temperature (SST) more than doubles during the mid-twenty-first century, highlighting an exceptionally wide range of possible climate states. Furthermore, there are strikingly distinct trajectories in these SSTs, arising from differences in the North Atlantic deep convection among ensemble members starting by 2030. We propose that these are stochastically triggered and subsequently amplified by positive feedbacks involving coupled ocean-atmosphere-sea ice interactions. Freshwater forcing associated with global warming seems necessary for activating these feedbacks, accentuating the impact of external forcing on internal variability. Further investigation on seven additional large ensembles affirms the robustness of our findings. By monitoring these mechanisms in real time and extending dynamical model predictions after positive feedbacks activate, we may achieve skillful long-lead North Atlantic decadal predictions that are effective for multiple decades. 
    more » « less
  3. Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components. 
    more » « less
  4. Abstract Interconnections between ocean basins are recognized as an important driver of climate variability. Recent modeling evidence suggests that the North Atlantic climate can respond to persistent warming of the tropical Indian Ocean sea surface temperature (SST) relative to the rest of the tropics (rTIO). Here, we use observational data to demonstrate that multi-decadal changes in pantropical ocean temperature gradients lead to variations of an SST-based proxy of the Atlantic Meridional Overturning Circulation (AMOC). The largest contribution to this temperature gradient-AMOCconnection comes from gradients between the Indian and Atlantic Oceans. TherTIOindex yields the strongest connection of this tropical temperature gradient to theAMOC. Focusing on the internally generated signal in three observational products reveals that an SST-basedAMOCproxy index has closely followed low-frequency changes ofrTIOtemperature with about 26-year lag since 1870. Analyzing the pre-industrial control simulations of 44 CMIP6 climate models shows that theAMOCproxy index lags simulated mid-latitudeAMOCvariations by 4 ± 4 years. These model simulations reveal the mechanism connectingAMOCvariations to pantropical ocean temperature gradients at a 27 ± 2 years lag, matching the observed time lag in 28 out of the 44 analyzed models. rTIO temperature changes affect the North Atlantic climate through atmospheric planetary waves, impacting temperature and salinity in the subpolar North Atlantic, which modifies deep convection and ultimately the AMOC. Through this mechanism, observed internalrTIOvariations can serve as a multi-decadal precursor ofAMOCchanges with important implications forAMOCdynamics and predictability. 
    more » « less
  5. Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed. 
    more » « less