skip to main content


Title: Preparation of (Bis)Cationic Nitrogen-Ligated I(III) Reagents: Synthesis of [(pyridine)2IPh](OTf)2 and [(4-CF3-pyridine)2IPh](OTf)2
Award ID(s):
1752244
NSF-PAR ID:
10318765
Author(s) / Creator(s):
Date Published:
Journal Name:
Organic Syntheses
Volume:
98
ISSN:
2333-3553
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polymer segmental dynamics in polymer nanocomposites (PNCs) can be significantly perturbed from bulk and underlie macroscopic mechanical and transport properties, but fundamental studies are necessary to build correlations between dynamics and properties. To elucidate a mechanistic description of this perturbation and isolate different molecular motions, we present quasi‐elastic neutron scattering (QENS) measurements on PNCs with attractive interactions comprised of colloidal silica nanoparticles (NPs) uniformly dispersed in poly(2‐vinyl pyridine) (P2VP) with and without backbone deuteration. Measurements of fully‐protonated P2VP probe the dynamics of both the polymer backbone and pyridine pendant group; whereas measurements of backbone‐deuterated P2VP isolate the dynamics of only the pyridine ring. On the small length scales (~1 nm) and fast time scales (~1 ns) captured by QENS, we show that the backbone and pyridine ring dynamics are highly coupled at high temperatures and both are slowed by about 35% relative to neat polymer in 25 vol% PNCs. This observation implies that the backbone and pendant interfacial dynamics are perturbed similarly in PNCs, which further develops our fundamental understanding of microscopic properties in PNCs.

     
    more » « less
  2. A set of novel, easily synthesized aluminum complexes, Al(κ2-N,N-2-(methylamino)pyridine)2R (R = Et, iBu) are reported. When subjected to 1 atm of CO2 pressure, each hemilabile pyridine arm dissociates and facilitates cooperative activation of the CO2 substrate reminiscent of a Frustrated Lewis Pair. This reaction has limited precedent for Al/N based Lewis Pair systems, and this is the first system readily shown to sequester multiple equivalents of CO2 per aluminum center. The ethyl variant then reacts further, inserting a third equivalent of CO2 into the aluminum alkyl to generate an aluminum carboxylate. Examples of this type of reactivity are rare under thermal conditions. A joint experimental/computational study validates the proposed reaction mechanism. 
    more » « less