skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Clumpy Galaxies in the Sloan Digital Sky Survey Stripe 82 Using the Galaxy Zoo
Abstract Giant, star-forming clumps are a common feature prevalent among high-redshift star-forming galaxies and play a critical role in shaping their chaotic morphologies and yet, their nature and role in galaxy evolution remains to be fully understood. A majority of the effort to study clumps has been focused at high redshifts, and local clump studies have often suffered from small sample sizes. In this work, we present an analysis of clump properties in the local universe, and for the first time, performed with a statistically significant sample. With the help of the citizen science-powered Galaxy Zoo: Hubble project, we select a sample of 92 z < 0.06 clumpy galaxies in Sloan Digital Sky Survey Stripe 82 galaxies. Within this sample, we identify 543 clumps using a contrast-based image analysis algorithm and perform photometry as well as estimate their stellar population properties. The overall properties of our z < 0.06 clump sample are comparable to the high-redshift clumps. However, contrary to the high-redshift studies, we find no evidence of a gradient in clump ages or masses as a function of their galactocentric distances. Our results challenge the inward migration scenario for clump evolution for the local universe, potentially suggesting a larger contribution of ex situ clumps and/or longer clump migration timescales.  more » « less
Award ID(s):
1716602
PAR ID:
10318838
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
912
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the ubiquity of clumpy star-forming galaxies at high-redshift, the origin of clumps are still largely unconstrained due to the limited observations that can validate the mechanisms for clump formation. We postulate that if clumps form due to the accretion of metal-poor gas that leads to violent disk instability, clumpy galaxies should have lower gas-phase metallicities compared to nonclumpy galaxies. In this work, we obtain the near-infrared spectrum for 42 clumpy and nonclumpy star-forming galaxies of similar masses, star formation rates, and colors atz ≈ 0.7 using the Gemini Near-Infrared Spectrograph (GNIRS) and infer their gas-phase metallicity from the [Nii]λ6584 and Hαline ratio. We find that clumpy galaxies have lower metallicities compared to nonclumpy galaxies, with an offset in the weighted average metallicity of 0.07 ± 0.02 dex. We also find an offset of 0.06 ± 0.02 dex between clumpy and nonclumpy galaxies in a comparable sample of 23 star-forming galaxies atz ≈ 1.5 using existing data from the FMOS-COSMOS survey. Similarly, lower [Nii]λ6584/Hαratios are typically found in galaxies that have more of their UVrestluminosity originating from clumps, suggesting that clumpier galaxies are more metal-poor. We also derive the intrinsic velocity dispersion and line-of-sight rotational velocity for galaxies from the GNIRS sample. The majority of galaxies haveσ0/vc ≈ 0.2, with no significant difference between clumpy and nonclumpy galaxies. Our result indicates that clump formation may be related to the inflow of metal-poor gas; however, the process that forms them does not necessarily require significant, long-term kinematic instability in the disk. 
    more » « less
  2. Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images. 
    more » « less
  3. ABSTRACT Galaxy Zoo: Clump Scout  is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a data set containing 3561 454 two-dimensional points, which constitute 1739 259 annotations of 85 286 distinct subjects provided by 20 999 volunteers. Using this data set, we identify 128 100 potential clumps distributed among 44 126 galaxies. This data set can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator 
    more » « less
  4. null (Ed.)
    Abstract We present a joint analysis of rest-UV and rest-optical spectra obtained using Keck/LRIS and Keck/MOSFIRE for a sample of 62 star-forming galaxies at z ∼ 2.3. We divide our sample into two bins based on their location in the [OIII]5007/Hβ vs. [NII]6584/Hα BPT diagram, and perform the first differential study of the rest-UV properties of massive ionizing stars as a function of rest-optical emission-line ratios. Fitting BPASS stellar population synthesis models, including nebular continuum emission, to our rest-UV composite spectra, we find that high-redshift galaxies offset towards higher [OIII]λ5007/Hβ and [NII]λ6584/Hα have younger ages ($$\log (\textrm {~Age/yr})=7.20^{+0.57}_{-0.20}$$) and lower stellar metallicities ($$Z_*=0.0010^{+0.0011}_{-0.0003}$$) resulting in a harder ionizing spectrum, compared to the galaxies in our sample that lie on the local BPT star-forming sequence ($$\log (\textrm {Age/yr})=8.57^{+0.88}_{-0.84}$$, $$Z_*=0.0019^{+0.0006}_{-0.0006}$$). Additionally, we find that the offset galaxies have an ionization parameter of $$\log (U)=-3.04^{+0.06}_{-0.11}$$ and nebular metallicity of ($$12+\log (\textrm {~O/H})=8.40^{+0.06}_{-0.07}$$), and the non-offset galaxies have an ionization parameter of $$\log (U)=-3.11^{+0.08}_{-0.08}$$ and nebular metallicity of $$12+\log (\textrm {~O/H})=8.30^{+0.05}_{-0.06}$$. The stellar and nebular metallicities derived for our sample imply that the galaxies offset from the local BPT relation are more α-enhanced ($$7.28^{+2.52}_{-2.82}\textrm {~O/Fe}_{\odot }$$) compared to those consistent with the local sequence ($$3.04^{+0.95}_{-0.54}\textrm {~O/Fe}_{\odot }$$). However, even galaxies that are entirely consistent with the local nebular excitation sequence appear to be α-enhanced – in contrast with typical local systems. Such differences must be considered when estimating gas-phase oxygen abundances at high redshift based on strong emission-line ratios. Specifically, a similarity in the location of high-redshift and local galaxies in the BPT diagram may not be indicative of a similarity in their physical properties. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present constraints on the massive star and ionized gas properties for a sample of 62 star-forming galaxies at z ∼ 2.3. Using BPASS stellar population models, we fit the rest-UV spectra of galaxies in our sample to estimate age and stellar metallicity which, in turn, determine the ionizing spectrum. In addition to the median properties of well-defined subsets of our sample, we derive the ages and stellar metallicities for 30 high-SNR individual galaxies – the largest sample of individual galaxies at high redshift with such measurements. Most galaxies in this high-SNR subsample have stellar metallicities of 0.001 < Z* < 0.004. We then use Cloudy + BPASS photoionization models to match observed rest-optical line ratios and infer nebular properties. Our high-SNR subsample is characterized by a median ionization parameter and oxygen abundance, respectively, of log (U)med = −2.98 ± 0.25 and 12 + log (O/H)med = 8.48 ± 0.11. Accordingly, we find that all galaxies in our sample show evidence for α-enhancement. In addition, based on inferred log (U) and 12 + log (O/H) values, we find that the local relationship between ionization parameter and metallicity applies at z ∼ 2. Finally, we find that the high-redshift galaxies most offset from the local excitation sequence in the BPT diagram are the most α-enhanced. This trend suggests that α-enhancement resulting in a harder ionizing spectrum at fixed oxygen abundance is a significant driver of the high-redshift galaxy offset on the BPT diagram relative to local systems. The ubiquity of α-enhancement among z ∼ 2.3 star-forming galaxies indicates important differences between high-redshift and local galaxies that must be accounted for in order to derive physical properties at high redshift. 
    more » « less