skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Design Guidelines for Human-Robot Interaction with Assistive Robot Manipulation Systems
Award ID(s):
1763878 1763469
PAR ID:
10318990
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Paladyn, Journal of Behavioral Robotics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While the ultimate goal of natural-language based Human-Robot Interaction (HRI) may be free-form, mixed-initiative dialogue,social robots deployed in the near future will likely primarily engage in wakeword-driven interaction, in which users’ commands are prefaced by a wakeword such as “Hey, Robot.” This style of interaction helps to allay user privacy concerns, as the robot’s full speech recognition module need not be employed until the target wakeword is used. Unfortunately, there are a number of concerns in the popular media surrounding this style of interaction, with consumers fearing that it is training users (in particular,children) to be rude towards technology, and by extension, rude towards other humans. In this paper, we present a study that demonstrates how an alternate style of wakeword, i.e., “Excuse me, Robot” may allay this concern, by priming users to phrase commands as Indirect Speech Acts 
    more » « less
  2. Ferretti, Gianni (Ed.)
    Many anticipated physical human-robot interaction (pHRI) applications in the near future are overground tasks such as walking assistance. For investigating the biomechanics of human movement during pHRI, this work presents Ophrie, a novel interactive robot dedicated for physical interaction tasks with a human in overground settings. Unique design requirements for pHRI were considered in implementing the one-arm mobile robot, such as the low output impedance and the ability to apply small interaction forces. The robot can measure the human arm stiffness, an important physical quantity that can reveal human biomechanics during overground pHRI, while the human walks alongside the robot. This robot is anticipated to enable novel pHRI experiments and advance our understanding of intuitive and effective overground pHRI. 
    more » « less
  3. We investigate the effectiveness of robot-generated mixed reality gestures. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time, and that robots can pair long referring expressions with mixed reality gestures without cognitively overloading users. 
    more » « less
  4. Speakers build rapport in the process of aligning conversational behaviors with each other. Rapport engendered with a teachable agent while instructing domain material has been shown to promote learning. Past work on lexical alignment in the field of education suffers from limitations in both the measures used to quantify alignment and the types of interactions in which alignment with agents has been studied. In this paper, we apply alignment measures based on a data-driven notion of shared expressions (possibly composed of multiple words) and compare alignment in one-on-one human-robot (H-R) interactions with the H-R portions of collaborative human-human-robot (H-H-R) interactions. We find that students in the H-R setting align with a teachable robot more than in the H-H-R setting and that the relationship between lexical alignment and rapport is more complex than what is predicted by previous theoretical and empirical work. 
    more » « less
  5. Recent advances in robotics have enabled robots to collaborate with workers in shared, fenceless workplaces in construction and civil engineering, which can improve productivity and address labor shortages. However, this collaboration may lead to collisions between workers and robots. Targeting safe collaboration, this study proposes an intention‐aware motion planning method for robots to avoid collisions. This method involves two novel deep networks that allow robots to anticipate the motions of workers based on inferences about workers' motion intentions. Then, a probabilistic collision‐checking mechanism is developed that enables robots to estimate the collision probability with the motions of workers and generate collision‐free adjustments. The results verify that the method enables robots to predict workers' intended motions 1 s in advance and generate adjustments with a collision probability of less than 5.0% during collaborative masonry tasks. This study facilitates the safe implementation of collaborative robots in construction and civil engineering. 
    more » « less