As big data analytics become increasingly popular, data-intensive scalable computing (DISC) systems help address the scalability issue of handling large data. However, automated testing for such data-centric applications is challenging, because data is often incomplete, continuously evolving, and hard to know a priori. Fuzz testing has been proven to be highly effective in other domains such as security; however, it is nontrivial to apply such traditional fuzzing to big data analytics directly for three reasons: (1) the long latency of DISC systems prohibits the applicability of fuzzing: naïve fuzzing would spend 98% of the time in setting up a test environment; (2) conventional branch coverage is unlikely to scale to DISC applications because most binary code comes from the framework implementation such as Apache Spark; and (3) random bit or byte level mutations can hardly generate meaningful data, which fails to reveal real-world application bugs. We propose a novel coverage-guided fuzz testing tool for big data analytics, called BigFuzz. The key essence of our approach is that: (a) we focus on exercising application logic as opposed to increasing framework code coverage by abstracting the DISC framework using specifications. BigFuzz performs automated source to source transformations to construct an equivalent DISCmore »
Permchecker: a toolchain for debugging memory managers with typestate
Dynamic memory managers are a crucial component of almost every modern software system. In addition to implementing efficient allocation and reclamation, memory managers provide the essential abstraction of memory as distinct objects, which underpins the properties of memory safety and type safety. Bugs in memory managers, while not common, are extremely hard to diagnose and fix. One reason is that their implementations often involve tricky pointer calculations, raw memory manipulation, and complex memory state invariants. While these properties are often documented, they are not specified in any precise, machine-checkable form. A second reason is that memory manager bugs can break the client application in bizarre ways that do not immediately implicate the memory manager at all. A third reason is that existing tools for debugging memory errors, such as Memcheck, cannot help because they rely on correct allocation and deallocation information to work. In this paper we present Permchecker, a tool designed specifically to detect and diagnose bugs in memory managers. The key idea in Permchecker is to make the expected structure of the heap explicit by associating typestates with each piece of memory. Typestate captures elements of both type (e.g., page, block, or cell) and state (e.g., allocated, free, more »
- Award ID(s):
- 1717373
- Publication Date:
- NSF-PAR ID:
- 10319106
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 5
- Issue:
- OOPSLA
- ISSN:
- 2475-1421
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Compilers are generally not aware of the semantics of library-based parallel programming models such as MPI and OpenSHMEM, and hence are unable to detect programming errors related to their use. To alleviate this issue, we developed a custom static checker for OpenSHMEM programs based on LLVM’s Clang Static Analyzer framework (CSA). We leverage the Symbolic Execution engine of the core Static Analyzer framework and its path-sensitive analysis to check for bugs on all OpenSHMEM program paths. We have identified common programming mistakes in OpenSHMEM programs that are detectable at compile-time and provided checks for them in the analyzer. They cover: utilization of the right type of mem- ory (private vs. symmetric memory); safe/synchronized access to program data in the presence of asynchronous, one-sided communication; and double-free of memories allocated using OpenSHMEM memory allocation routines. Our experimental analysis showed that the static checker successfully detects bugs in OpenSHMEM code.
-
Training deep neural networks can generate non-descriptive error messages or produce unusual output without any explicit errors at all. While experts rely on tacit knowledge to apply debugging strategies, non-experts lack the experience required to interpret model output and correct Deep Learning (DL) programs. In this work, we identify DL debugging heuristics and strategies used by experts, andIn this work, we categorize the types of errors novices run into when writing ML code, and map them onto opportunities where tools could help. We use them to guide the design of Umlaut. Umlaut checks DL program structure and model behavior against these heuristics; provides human-readable error messages to users; and annotates erroneous model output to facilitate error correction. Umlaut links code, model output, and tutorial-driven error messages in a single interface. We evaluated Umlaut in a study with 15 participants to determine its effectiveness in helping developers find and fix errors in their DL programs. Participants using Umlaut found and fixed significantly more bugs and were able to implement fixes for more bugs compared to a baseline condition.
-
Continuous Integration (CI) practices encourage developers to frequently integrate code into a shared repository. Each integration is validated by automatic build and testing such that errors are revealed as early as possible. When CI failures or integration errors are reported, existing techniques are insufficient to automatically locate the root causes for two reasons. First, a CI failure may be triggered by faults in source code and/or build scripts, while current approaches consider only source code. Second, a tentative integration can fail because of build failures and/or test failures, while existing tools focus on test failures only. This paper presents UniLoc, the first unified technique to localize faults in both source code and build scripts given a CI failure log, without assuming the failure’s location (source code or build scripts) and nature (a test failure or not). Adopting the information retrieval (IR) strategy, UniLoc locates buggy files by treating source code and build scripts as documents to search and by considering build logs as search queries. However, instead of naïvely applying an off-the-shelf IR technique to these software artifacts, for more accurate fault localization, UniLoc applies various domain-specific heuristics to optimize the search queries, search space, and ranking formulas. To evaluatemore »
-
Memory errors are one of the most common vulnerabilities for the popularity of memory unsafe languages including C and C++. Once exploited, it can easily lead to system crash (i.e., denial-of-service attacks) or allow adversaries to fully compromise the victim system. This paper proposes MEDS, a practical memory error detector. MEDS significantly enhances its detection capability by approximating two ideal properties, called an infinite gap and an infinite heap. The approximated infinite gap of MEDS setups large inaccessible memory region between objects (i.e., 4 MB), and the approximated infinite heap allows MEDS to fully utilize virtual address space (i.e., 45-bits memory space). The key idea of MEDS in achieving these properties is a novel user-space memory allocation mechanism, MEDSALLOC. MEDSALLOC leverages a page aliasing mechanism, which allows MEDS to maximize the virtual memory space utilization but minimize the physical memory uses. To highlight the detection capability and practical impacts of MEDS, we evaluated and then compared to Google’s state-of-the-art detection tool, AddressSanitizer. MEDS showed three times better detection rates on four real-world vulnerabilities in Chrome and Firefox. More importantly, when used for a fuzz testing, MEDS was able to identify 68.3% more memory errors than AddressSanitizer for the same amountmore »