skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bio-Mimicking, Electrical Excitability Phenomena Associated With Synthetic Macromolecular Systems: A Brief Review With Connections to the Cytoskeleton and Membraneless Organelles
Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems. Initial key literature, dating to roughly the late 1960’s into the early 1990’s, is reviewed here. We suggest that excitability in response to electrical stimulation is a material phenomenon that is exploited by living organisms, but that is not exclusive to living systems. Furthermore, given the ubiquity of biological hydrogels, we also speculate that excitability in protocells of primordial organisms might have shared some of the same molecular mechanisms seen in non-biological macromolecular systems, and that vestigial traces of such mechanisms may still play important roles in modern organisms’ biological hydrogels. Finally, we also speculate that bio-mimicking excitability of synthetic macromolecular systems might have practical biomedical applications.  more » « less
Award ID(s):
1844463
PAR ID:
10319220
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Molecular Neuroscience
Volume:
15
ISSN:
1662-5099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Living biological systems, ranging from single cells to whole organisms, can sense, process information, and actuate in response to changing environmental conditions. Inspired by living biological systems, engineered living cells and nonliving matrices are brought together, which gives rise to the technology of engineered living materials. By designing the functionalities of living cells and the structures of nonliving matrices, engineered living materials can be created to detect variability in the surrounding environment and to adjust their functions accordingly, thereby enabling applications in health monitoring, disease treatment, and environmental remediation. Hydrogels, a class of soft, wet, and biocompatible materials, have been widely used as matrices for engineered living cells, leading to the nascent field of engineered living hydrogels. Here, the interactions between hydrogel matrices and engineered living cells are described, focusing on how hydrogels influence cell behaviors and how cells affect hydrogel properties. The interactions between engineered living hydrogels and their environments, and how these interactions enable versatile applications, are also discussed. Finally, current challenges facing the field of engineered living hydrogels for their applications in clinical and environmental settings are highlighted. 
    more » « less
  2. BackgroundSelf‐sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single‐cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators. ResultsApproaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest,de novooscillators in both live cells and cell‐free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations. ConclusionWith the recent development of biological and computational tools, both approaches have made significant achievements. 
    more » « less
  3. null (Ed.)
    The recent advances in bio-integratable electronics are creating new opportunities for investigating and directing biologically significant processes, yet their performance to date is still limited by the inherent physiochemical and signaling mismatches at the heterogeneous interfaces. Hydrogels represent a unique category of materials to bridge the gap between biological and electronic systems because of their structural/functional similarity to biological tissues and design versatility to accommodate cross-system communication. In this review, we discuss the latest progress in the engineering of hydrogel interfaces for bioelectronics development that promotes (1) structural compatibility, where the mechanical and chemical properties of hydrogels can be modulated to achieve coherent, chronically stable biotic-abiotic junctions; and (2) interfacial signal transduction, where the charge and mass transport within the hydrogel mediators can be rationally programmed to condition/amplify the bioderived signals and enhance the electrical/electrochemical coupling. We will further discuss the application of functional hydrogels in complex physiological environments for bioelectronic integration across different scales/biological levels. These ongoing research efforts have the potential to blur the distinction between living systems and artificial electronics, and ultimately decode and regulate biological functioning for both fundamental inquiries and biomedical applications. 
    more » « less
  4. Life has existed on Earth for most of the planet’s history, yet major gaps and unresolved questions remain about how it first arose and persisted. Early Earth posed numerous challenges for life, including harsh and fluctuating environments. Today, many organisms cope with such conditions by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This process protects inactive individuals and minimizes the risk of extinction by preserving information that stabilizes life-system dynamics. Here, we develop a framework for understanding dormancy on early Earth, beginning with a primer on dormancy theory and its core criteria. We hypothesize that dormancy-like mechanisms acting on chemical precursors in a prebiotic world may have facilitated the origin of life. Drawing on evidence from phylogenetic reconstructions and the fossil record, we demonstrate that dormancy is prevalent across the tree of life and throughout deep time. These observations lead us to consider how dormancy might have shaped nascent living systems by buffering stochastic processes in small populations, protecting against large-scale planetary disturbances, aiding dispersal in patchy landscapes and facilitating adaptive radiations. Given that dormancy is a fundamental and easily evolved property on Earth, it is also likely to be a feature of life elsewhere in the universe. 
    more » « less
  5. Schickore, Jutta (Ed.)
    Biologists often study certain biological systems as models of a phenomenon of interest even if they already know that the phenomenon occurs through diverse mechanisms and hence none of those systems can sufficiently represent it by itself. To understand this modeling practice, the present paper provides an account of how multiple model systems can be used to study a phenomenon whose underlying mechanisms are diverse. Even if generalizability of results from a single model system is significantly limited, generalizations concerning particular aspects of mechanisms often hold across certain ranges of biological systems, which enables multiple model systems to jointly represent such a phenomenon. Comparing mechanisms that operate in different biological systems as examples of the same phenomenon also facilitates characterization and investigation of individual mechanisms. I also compare my account with two existing accounts of the use of multiple model systems and argue that my account is distinct from and complementary to them. 
    more » « less