skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stage-specific regulation of purine metabolism during infectious growth and sexual reproduction in Fusarium graminearum
Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.  more » « less
Award ID(s):
1758434
PAR ID:
10319327
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
New phytologist
Volume:
230
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Ascospores are the primary inoculum inFusarium graminearum. Interestingly, 70 of its genes have premature stop codons (PSC) and require A‐to‐I editing during sexual reproduction to encode full‐length proteins, including the ortholog of yeast Ama1, a meiosis‐specific activator of APC/C. In this study, we characterized the function ofFgAMA1and its PSC editing.FgAMA1was specifically expressed during sexual reproduction. TheFgama1mutant was normal in growth and perithecium formation but defective in ascospogenesis. Instead of forming four‐celled, uninucleate ascospores,Fgama1mutant produced oval, single‐celled, binucleated ascospores by selfing. Some mutant ascospores began to bud and underwent additional mitosis inside asci. Expression of the wild‐type or editedFgAMA1but not the uneditable allele complementedFgama1. In theFgama1xmat‐1‐1outcross, over 60% of the asci had eightFgama1or intermediate (elongated but single‐celled) ascospores, suggesting efficient meiotic silencing of unpairedFgAMA1. Deletion ofFgPAL1, one of the genes upregulated inFgama1also resulted in defects in ascospore morphology and budding. Overall, our results showed thatFgAMA1is dispensable for meiosis but important for ascospore formation and discharge. InF. graminearum, whereas some of its targets are functional during meiosis, FgAma1 may target other proteins that function after spore delimitation. 
    more » « less
  2. Xue, Chaoyang (Ed.)
    Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, includingFusarium graminearumandNeurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at −1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages inF.graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms ofFgTAD2andFgTAD3as well as cofactors such asAME1andFIP5that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA. 
    more » « less
  3. A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement ofTAD2andTAD3orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role ofFgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing inFusarium graminearum.FgTAD2had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactiveFgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations inFgTAD2that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenousFgTAD2allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi. 
    more » « less
  4. ABSTRACT Fungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription of Neurospora crassa germinating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical of N. crassa colonies. IMPORTANCE One of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes. 
    more » « less
  5. ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum , we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies. 
    more » « less