In the past decade, academic computing curricular guidelines have shifted from specifying knowledge and occasionally technical skills to establishing the overall competence expected of graduates. For instance, Computing Curricula 2020 (CC2020) guidelines identify competency as knowledge, skills, and dispositions where “dispositions” correspond to the behavioral and professional characteristics driven by employer needs and captured by industry-driven frameworks, such as the Skills Framework for the Information Age (SFIA). Computing programs thus must also ensure that graduates have these characteristics to improve initial employment and long-term career prospects. This paper aims to understand and achieve consistency between academia and industry curricular frameworks. The CC2020 dispositions map to the responsibility characteristics for SFIA Level 3, the level appropriate for a new graduate. As the mapping is not one-to-one, the paper reviews the extent to which each SFIA responsibility characteristic requires and enables the CC22020 dispositions, identifying potential shortcomings and, conversely, the importance of each disposition as it supports the responsibility characteristics. The developed mapping is validated by relating the CC2020 dispositions to the SFIA behavioral factors, the principal “21st Century Skills,” and relevant competency-based educational frameworks. Thus, dispositions in competency-focused curricula map to the actual competencies sought by employers. Finally, the paper postulates that future computing curricula must further develop the CC2020 dispositions and relate them to SFIA to guide academic programs in their preparation of career-ready graduates to reduce the current “skills gap”.
more »
« less
Professional Competencies in Computing Education: Pedagogies and Assessment
Competency-based learning has been a successful pedagogical approach for centuries, but only recently has it gained traction within computing. Competencies, as defined in Computing Curricula 2020, comprise knowledge, skills, and professional dispositions. Building on recent developments in competency and computing education, this working group examined relevant pedagogical theories, investigates various skill frameworks, reviewed competencies and standard practices in other professional disciplines such as medicine and law. It also investigated the integrative nature of content knowledge, skills, and professional dispositions in defining professional competencies in computing education. In addition, the group explored appropriate pedagogies and competency assessment approaches. It also developed guidelines for evaluating student achievement against relevant professional competency frameworks and explores partnering with employers to offer students genuine professional experience. Finally, possible challenges and opportunities in moving from traditional knowledge-based to competency-based education were also examined. This report makes recommendations to inspire educators of future computing professionals and smooth students’ transition from academia to employment.
more »
« less
- PAR ID:
- 10319440
- Date Published:
- Journal Name:
- 2021 ITiCSE Working Group Reports (ITiCSEWGR ’21)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Competencies are knowledge, skills, and dispositions that enable professionals to successfully perform a goal-oriented task. A traditional education model focuses primarily on presenting and assessing knowledge, with student performance represented by grades. The Competency-Based Education (CBE) model focuses on each student developing and demonstrating knowledge, skills, and dispositions. This implies a difference in the approach towards curriculum (content), pedagogy (teaching methods), and assessment. This workshop will introduce basic concepts of competencies and CBE. We will present a competency list derived from research on computing professionals' experiences. Participants will develop a spiral curriculum and (re)design a course to purposefully integrate cross-disciplinary skills (e.g., communication) and dispositions (e.g., perseverance), along with computing skills. Takeaways will include: (1) an understanding of what competencies and CBE are, and what pedagogical and assessment approaches may align with CBE; (2) a document that integrates competencies across a spiral curriculum; and (3) a plan for (re)designing one of their courses. Collaborative ideation will be used to help generate ideas for each participant's unique context and goals. Higher education faculty/instructors and administrators who would like to learn more about competencies and apply CBE practices to their own program/course will find the most benefit from this workshop. Multiple people from the same program are encouraged to attend, allowing them to consider how they can plan for integrating competencies across their program-level curriculum. Please bring internet-enabled laptops/comparably sized devices, choose a course to (re)design, and have access to relevant course materials.more » « less
-
Competencies are knowledge, skills, and dispositions that enable professionals to successfully perform a goal-oriented task. A traditional education model focuses primarily on presenting and assessing knowledge, with student performance represented by grades. The Competency-Based Education (CBE) model focuses on each student developing and demonstrating knowledge, skills, and dispositions. This implies a difference in the approach towards curriculum (content), pedagogy (teaching methods), and assessment. This workshop will introduce basic concepts of competencies and CBE. We will present a competency list derived from research on computing professionals' experiences. Participants will develop a spiral curriculum and (re)design a course to purposefully integrate cross-disciplinary skills (e.g., communication) and dispositions (e.g., perseverance), along with computing skills. Takeaways will include: (1) an understanding of what competencies and CBE are, and what pedagogical and assessment approaches may align with CBE; (2) a document that integrates competencies across a spiral curriculum; and (3) a plan for (re)designing one of their courses. Collaborative ideation will be used to help generate ideas for each participant's unique context and goals. Higher education faculty/instructors and administrators who would like to learn more about competencies and apply CBE practices to their own program/course will find the most benefit from this workshop. Multiple people from the same program are encouraged to attend, allowing them to consider how they can plan for integrating competencies across their program-level curriculum. Please bring internet-enabled laptops/comparably sized devices, choose a course to (re)design, and have access to relevant course materials.more » « less
-
Since the early 21st century, ABET’s accreditation criteria have focused on learning outcomes (what students learn) rather than what professors teach. Such accreditation criteria bring to bear the need for programs to establish clear learning objectives and assessment processes that ensure that program graduates have the requisite technical and professional preparation. To this end, ABET defines student outcomes as “what students are expected to know and be able to do by the time of graduation,” further noting that these outcomes “relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.” With the recent release of Computing Curricula 2020 (CC2020), the competencies of computing program graduates have received additional attention. CC2020 describes competency as “comprising knowledge, skills, and dispositions that are observable in accomplishing a task within a work context.” ABET’s student outcomes thus largely correspond to the CC2020 competencies of program graduates. This paper is a first attempt to reconcile the two notions in the context of computer science. It presents the relevant background and discusses student competencies and their assessments that focus on competency-based learning in computer science. The contributions of this paper are (1) forging an improved shared understanding of computing competencies and (2) an interpretation of ABET’s student outcomes to improve the competency, including dispositions, expectations of computer science graduates.more » « less
-
Competencies (knowledge, skills, and dispositions) enable employers and educators to speak a common language regarding what computing graduates are expected to demonstrate on the job. This study focuses on competencies required by managers in the computing industry, based on semi-structured interviews of ten individuals in managerial roles, such as directors, project managers, and product managers with prior experience in computing-related roles. Constant Comparative for Naturalistic Inquiry was used to analyze the data. The most frequently discussed managerial skills included leadership, project management, hiring and evaluating candidates, and mentorship. In addition, professional skills such as communication, problem-solving, and lifelong learning were mentioned, along with essential dispositions that support the development of these skills, e.g., collaborative mindset, lifelong learning orientation, and self-regulation. Participants also emphasized the need to make judgments, build relationships, and collaborate within or outside their team. Career readiness in the computing industry is not limited to entry-level jobs; professionals should have the opportunity to navigate their preferred career path—whether they aspire to move down a technical or managerial path. This study can contribute to both students’ and educators’ understanding of the managerial career path and what types of competencies and experiences should be included in computing education programs to set them up for success across their career path. Implications for pedagogical approaches will also be discussed.more » « less
An official website of the United States government

