skip to main content


Title: Detection of 7Be ii in the Small Magellanic Cloud
ABSTRACT

We analyse high-resolution spectra of two classical novae that exploded in the Small Magellanic Cloud (SMC). 7Be ii resonance transitions are detected in both ASASSN-19qv and ASASSN-20ni novae. This is the first detection outside the Galaxy and confirms that thermo-nuclear runaway reactions, leading to the 7Be formation, are effective also in the low-metallicity regime, characteristic of the SMC. Derived yields are of N(7Be = 7Li)/N(H)  = (5.3 ± 0.2) × 10−6 which are a factor 4 lower than the typical values of the Galaxy. Inspection of two historical novae in the Large Magellanic Cloud observed with IUE in 1991 and 1992 showed also the possible presence of 7Be and similar yields. For an ejecta of MH, ej = 10−5 M⊙, the amount of 7Li produced is of $M_{^7 Li} = (3.7 \pm 0.6) \times 10^{-10}$ M⊙ per nova event. Detailed chemical evolutionary model for the SMC shows that novae could have made an amount of lithium in the SMC corresponding to a fractional abundance of A(Li) ≈ 2.6. Therefore, it is argued that a comparison with the abundance of Li in the SMC, as measured by its interstellar medium, could effectively constrain the amount of the initial abundance of primordial Li, which is currently controversial.

 
more » « less
Award ID(s):
1751874
NSF-PAR ID:
10361874
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5302-5314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Large Magellanic Cloud (LMC) has an extensive Hαemission halo that traces an extended, warm ionized component of its interstellar medium. Using the Wisconsin HαMapper telescope, we present the first kinematic Hαsurvey of an extensive region around the LMC, from (,b) = (264.°5, − 45.°5) to (295.°5, − 19.°5), covering +150 ≤vLSR≤ + 390 km s−1. We find that ionized hydrogen exists throughout the galaxy and extends several degrees beyond detected neutral hydrogen emission(logNHI/cm218.3)as traced by 21 cm in current surveys. Using the column density structure of the neutral gas and stellar line-of-sight depths as a guide, we estimate the upper limit mass of the ionized component of the LMC to be roughlyMionized≈ (0.6–1.8) × 109M, which is comparable to the total neutral atomic gas mass in the same region (Mneutral≈ 0.76–0.85 × 109M). Considering only the atomic phases, we findMionized/Mionized+neutral, to be 46%–68% throughout the LMC and its extended halo. Additionally, we find an ionized gas cloud that extends off of the LMC at (,b) ≈ (285°, − 28°) into a region previously identified as the Leading Arm complex. This gas is moving at a similar line-of-sight velocity as the LMC and hasMionized/Mionized+neutral= 13%–51%. This study, combined with previous studies of the SMC and extended structures of the Magellanic Clouds, continues to suggest that warm, ionized gas is as massive and dynamically important as the neutral gas in the Magellanic System.

     
    more » « less
  2. ABSTRACT

    In this paper, we analyse the metallicity structure of the Magellanic Clouds using parameters derived from the Gaia Data Release 3 (DR3) low-resolution XP (for Blue/Red Photometer) spectra, astrometry, and photometry. We find that the qualitative behaviour of the radial metallicity gradients in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) is quite similar, with both of them having a metallicity plateau at intermediate radii and a second at larger radii. The LMC has a first metallicity plateau at [M/H] ≈ −0.8 for 3–7°, while the SMC has one at [M/H] ≈ −1.1 for 3–5°. The outer LMC periphery has a fairly constant metallicity of [M/H] ≈ −1.0 (10–18°), while the outer SMC periphery has a value of [M/H] ≈ −1.3 (6–10°). The sharp drop in metallicity in the LMC at ∼8° and the marked difference in age distributions in these two regions suggest that there were two important evolutionary phases in the LMC. In addition, we find that the Magellanic periphery substructures, likely Magellanic debris, are mostly dominated by LMC material stripped off in old interactions with the SMC. This presents a new picture in contrast with the popular belief that the debris around the clouds had been mostly stripped off from the SMC due to having a lower mass. We perform a detailed analysis for each known substructure and identify its potential origin based on metallicities and motions with respect to each galaxy.

     
    more » « less
  3. We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z  = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosion energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210  ±  0.0025  M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6  M ⊙ . We also constrained the progenitor radius to be R *  = 580  ±  28  R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3  ±  0.1  Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4   M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M *  ≈ 1 × 10 9   M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07  M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient. 
    more » « less
  4. Abstract

    M64, often called the “Evil Eye” galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a “flyby” interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell ofM= 1.80 ± 0.54 × 108Mand [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108Mfor the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite ofM⋆,prog≃ 5 × 108M. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.

     
    more » « less
  5. Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity. 
    more » « less