Synopsis Emerging infectious diseases have been of particular interest as a major threat to global biodiversity. In amphibians, two fungal sister taxa, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), along with the viral pathogen ranavirus, have affected global populations. Factors such as host traits, abiotic and biotic environmental conditions, and pathogen prevalence contribute to species-specific disease susceptibility. The eastern United States is home to the Appalachian Mountain system, known as a “hotspot” for salamander biodiversity. Bd and ranavirus are present throughout the Appalachians, and a Bsal emergence could be imminent. Throughout the Appalachians are the spotted salamanders, Ambystoma maculatum, a mostly terrestrial salamander that participates in mass breeding migration to ponds and vernal pools in the late spring. Previous experimental studies have shown that spotted salamanders appear to be resistant to Bd and Bsal infection, but the mechanisms behind Bd defense remain unknown. Spotted salamanders emerging from their overwintering habitats were hypothesized to have potent anti-Bd function expressed in their mucus and in their skin microbiomes, as a countermeasure to annual Bd re-emergence. We used non-invasive sampling at two pools during the spotted salamander annual breeding event to (I) determine pathogen prevalence, (II) quantify the antifungal potential of salamander skin mucus, and (III) characterize the diversity and composition of the salamander skin microbiome and contrast it to that of the corresponding environmental microbiome. We did not detect any Bd, Bsal, or ranavirus in the salamanders. The salamander mucus did not inhibit Bd growth in vitro, and anti-Bd bacteria were at low relative abundance in the microbiome. The salamander microbiome sourced a proportion of bacteria from the environment and appeared to select rare taxa from their respective pools; however, their functional relevance in pathogen defense is unclear. Our results suggest that the spotted salamander mucosal secretions and skin microbiome are not the mechanisms of defense against Bd. Rather, elements not captured by the mucosome (e.g., immune cell gene expression) may confer resistance. This study contributes to the understanding of salamander intraspecies variation in disease susceptibility.
more »
« less
The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus
The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae ), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus . Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.
more »
« less
- PAR ID:
- 10319606
- Date Published:
- Journal Name:
- Frontiers in Immunology
- Volume:
- 12
- ISSN:
- 1664-3224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microbiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (Notophthalmus perstriatus), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungusBatrachochytrium dendrobatidisand ranavirus. Our analyses show that pre-metamorphic larval and paedomorphic stages share similar bacterial compositions, and that the changes in the microbiome coincided with physiological restructuring during metamorphosis. Newts undergoing metamorphosis exhibited microbiome compositions that were intermediate between paedomorphic and post-metamorphic stages, further supporting the idea that metamorphosis is a major driver of host-associated microbes in amphibians. We did not find support for infection-related disruption of the microbiome, though infection replicates were small for each respective life stage.more » « less
-
The amphibian chytrid fungus, Batrachochytrium salamandrivorans ( Bsal ) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’.more » « less
-
Ariel, Ellen (Ed.)Ranaviruses have been associated with rising numbers of mass die-offs in amphibian populations around the globe. However, most studies on ranaviruses to date focused on larval amphibians. To assess the role of postmetamorphic amphibians in the epidemiology of ranaviruses and to determine the role of viral immune-suppression genes, we performed a bath-exposure study on post-metamorphic wood frogs ( Rana sylvatica) using environmentally relevant concentrations of wild-type Frog virus 3 (WT FV3), and a gene-knockout mutant (KO FV3), deficient for the putative immune-suppression gene vIF-2α. We observed a 42% infection rate and 5% mortality across the virus challenges, with infection rates and viral loads following a dose-dependent pattern. Individuals exposed to the knockout variant exhibited significantly decreased growth and increased lethargy compared with wild-type treatments. Although 85% of exposed individuals exhibited common signs of ranavirosis throughout the experiment, most of these individuals did not exhibit signs of infection by 40 d post-exposure. Overall, we showed that even a single short time exposure to environmentally relevant concentrations of ranavirus may cause sublethal infections in postmetamorphic amphibians, highlighting the importance of this life stage in the epidemiology of ranaviruses. Our study also supports the importance of the vIF-2α gene in immune-suppression in infected individuals.more » « less
-
Several recent studies have revealed previously unknown complexity of the amphibian interferon (IFN) system. Being unique in vertebrate animals, amphibians not only conserve and multiply the fish-like intron-containing IFN genes, but also rapidly evolve amniote-like intronless IFN genes in each tested species. We postulate that the amphibian IFN system confers an essential model to study vertebrate immune evolution in molecular and functional diversity to cope with unprecedented pathophysiological requirement during terrestrial adaption. Studies so far have ascribed a potential role of these IFNs in immune regulation against intracellular pathogens, particularly viruses; however, many knowledge gaps remain elusive. Based on recent reports about IFN’s multifunctional properties in regulation of animal physiological and defense responses, we interpret that amphibian IFNs may evolve novel function pertinent to their superior molecular diversity. Such new function revealed by the emerging studies about antifungal and developmental regulation of amphibian IFNs will certainly promote our understanding of immune evolution in vertebrates to address current pathogenic threats causing amphibian decline.more » « less
An official website of the United States government

