skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interpretation of the Precipitation Structure Contained in Polarimetric Radio Occultation Profiles Using Passive Microwave Satellite Observations
Abstract Observationally, a major source of uncertainty in evaluation of climate models arises from the difficulty in obtaining globally distributed, fine scale profiles of temperature, pressure and water vapor, that probe through convective precipitating clouds, from the boundary layer to the upper levels of the free troposphere. In this manuscript, a two-year analysis of data from the Radio Occultations through Heavy Precipitation (ROHP) polarimetric RO demonstration mission onboard the Spanish PAZ spacecraft is presented. ROHP measures the difference in the differential propagation phase delay (Δ đťś™ ) between two orthogonal polarization receive states that is induced from the presence of non-spherically shaped hydrometeors along the Global Navigation Satellite System (GNSS) propagation path, complementing the standard RO thermodynamic profile. Since Δφ is a net path-accumulated depolarization and does not resolve the precipitation structure along the propagation path, orbital coincidences between ROHP and the Global Precipitation Measurement (GPM) constellation passive MW radiometers are identified to provides three-dimensional precipitation context to the RO thermodynamic profile. Passive MW-derived precipitation profiles are used to simulate the Δ φ along the ROHP propagation paths. Comparison between the simulated and observed Δ φ are indicative of the ability of ROHP to detect threshold levels of ray path-averaged condensed water content, as well as to suggest possible inferences on the average ice phase hydrometeor non-sphericity. The use of the polarimetric RO vertical structure is demonstrated as a means to condition the lower tropospheric humidity by the top-most height of the associated convective cloud structure.  more » « less
Award ID(s):
1936810
PAR ID:
10319688
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
ISSN:
0739-0572
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting satellites is one of the essential variables for understanding the global climate. However, almost all validation studies for such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components (EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content profiles estimated from the Global Precipitation Measurement Microwave Imager (GMI) are validated using the GMI + Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by about 20%–50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%–50% in the middle-to-high latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for precipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation performances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the surface precipitation rate and the associated vertical profiles are achieved to some extent by the passive MW-based algorithms. 
    more » « less
  2. Convective transition statistics serve as diagnostics for the parameterization of convection in climate and weather forecast models by characterizing the dependence of convection on the humidity-temperature environment. The observed strong pickup of precipitation as a function of layer-averaged water vapor and temperature is captured in models with varying accuracy. For independent observational verification, a low-Earth orbiting satellite constellation of Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) measurements would be spaced such that adjacent RO would capture different profiles within and immediately adjacent to convection. Here, the number of profile observations needed to distinguish between convective transition relations by different tropospheric temperature ranges is determined, over different tropical oceanic basins. To obtain these, orbit simulations were performed by flying different satellite constellations over global precipitation from the Global Precipitation Measurement (GPM) mission, varying the numbers of satellites, orbit altitude, and inclination. A 45-degree orbit inclination was found to be a good tradeoff between maximizing the number of observations collected per day, and the desired 50–150-km spacing between individual RO ray paths. Assuming a set of reasonable assumptions for net data yield, three tropospheric temperatures can be distinguished by 1 K with a six-month on-orbit duration from a constellation of at least three satellites. 
    more » « less
  3. Abstract Polarimetric variables such as differential phase ΦDPand its range derivative, specific differential phaseKDP, contain useful information for improving quantitative precipitation estimation (QPE) and microphysics retrieval. However, the usefulness of the current operationally utilized estimation method ofKDPis limited by measurement error and artifacts resulting from the differential backscattering phaseδ. The contribution ofδcan significantly influence the ΦDPmeasurements and therefore negatively affect theKDPestimates. Neglecting the presence ofδwithin non-Rayleigh scattering regimes has also led to the adoption of incorrect terminology regarding signatures seen within current operationalKDPestimates implying associated regions of unrealistic liquid water content. A new processing method is proposed and developed to estimate bothKDPandδusing classification and linear programming (LP) to reduce bias inKDPestimates caused by theδcomponent. It is shown that by applying the LP technique specifically to the rain regions of Rayleigh scattering along a radial profile, accurate estimates of differential propagation phase, specific differential phase, and differential backscattering phase can be retrieved within regions of both Rayleigh and non-Rayleigh scattering. This new estimation method is applied to cases of reported hail and tornado debris, and the LP results are compared to the operationally utilized least squares fit (LSF) estimates. The results show the potential use of the differential backscattering phase signature in the detection of hail and tornado debris. 
    more » « less
  4. Abstract The transition to deep convection and associated precipitation is often studied in relationship to the associated column water vapor owing to the wide availability of these data from various ground or satellite-based products. Based on radiosonde and ground-based Global Navigation Satellite System (GNSS) data examined at limited locations and model comparison studies, water vapor at different vertical levels is conjectured to have different relationships to convective intensity. Here, the relationship between precipitation and water vapor in different free tropospheric layers is investigated using globally distributed GNSS radio occultation (RO) temperature and moisture profiles collocated with GPM IMERG precipitation across the tropical latitudes. A key feature of the RO measurement is its ability to directly sense in and near regions of heavy precipitation and clouds. Sharp pickups (i.e. sudden increases) of conditionally averaged precipitation as a function of water vapor in different tropospheric layers are noted for a variety of tropical ocean and land regions. The layer-integrated water vapor value at which this pickup occurs has a dependence on temperature that is more complex than constant RH, with larger subsaturation at warmer temperatures. These relationships of precipitation to its thermodynamic environment for different layers can provide a baseline for comparison with climate model simulations of the convective onset. Furthermore, vertical profiles before, during, and after convection are consistent with the hypothesis that the lower troposphere plays a causal role in the onset of convection, while the upper troposphere is moistened by de-trainment from convection. 
    more » « less
  5. Abstract Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits. 
    more » « less