A westward‐propagating Rossby‐like wave signal is found to explain a large fraction of the intraseasonal variance in cloud brightness over the Western Hemisphere. A series of diagnostic criteria suggest that this wave is a moisture mode: its moisture anomalies dominate the distribution of moist static energy (MSE) and are in phase with the precipitation anomalies; and the thermodynamic equation obeys the weak temperature gradient approximation. The wave propagates westward due to zonal moisture advection by the mean flow and is maintained by radiative heating and meridional moisture advection. These properties compare favorably with the westward propagating Rossby mode in an equatorial beta‐plane model with prognostic moisture, mean meridional moisture gradient, and mean zonal wind. These results underscore the importance of water vapor in the dynamics of slowly evolving tropical systems, and the limitations of dry shallow water theory that rely on a “reduced equivalent depth” to represent moist dynamics.
- Award ID(s):
- 1936810
- NSF-PAR ID:
- 10319690
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 78
- Issue:
- 10
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Intraseasonal oscillations affect the weather not just in the tropics but all around the globe. The convectively coupled equatorial Rossby wave is observed as the westward‐moving intraseasonal oscillation. The fundamental physics of its coupling is still unknown; thus, many questions remain unanswered. How is its phase speed altered by convection? What makes it unstable? Why is it an intraseasonal oscillation? Using the Fuchs and Raymond model with linearized governing equations on an equatorial beta plane, first baroclinic mode vertical structure, and moisture and wind‐induced surface heat exchange (WISHE) convective parametrizations, this paper seeks a fundamental analytical theory that can explain the basic features of the convectively coupled equatorial Rossby wave. The WISHE‐moisture theory leads to a large‐scale, unstable westward propagating mode in the
n = 1 case, which we call the westward propagating WISHE‐moisture mode. We find that the westward propagating WISHE‐moisture mode is indeed the free equatorial Rossby wave in the absence of moisture closure and WISHE. It is propagating westward due to the beta effect, and it slows down when it is convectively coupled. Its phase speed decreases mainly due to WISHE and cloud‐radiation interactions. Thex ‐y structure of the pressure and horizontal winds is similar to the free and observed Rossby wave, with convergent net flow. The strongest easterlies are to the west of the precipitation maximum increasing the moisture in that area. The mode is unstable due to the interplay of surface fluxes and moisture, which increases as a function of zonal wavelength. -
Abstract A recent analytical model of the Madden‐Julian Oscillation (MJO), the WISHE‐moisture mode theory, successfully models all the main characteristics of the MJO, namely, that it is a planetary, unstable, and eastward propagating tropical mode. The main assumption of the WISHE‐moisture mode theory is that an interplay between the global mean easterly zonal winds and moisture leads to the propagation and destabilization of the MJO. We investigate this theory by building a climatological MJO using reanalysis, OAFlux surface latent heat fluxes, and outgoing longwave radiation data and compare it to the WISHE‐moisture mode. The necessary condition for the WISHE‐moisture mode theory—easterly global mean zonal winds—is always present in the tropics. Comparing the zonal wind, moisture, and moisture tendency anomalies to the WISHE‐moisture mode, we find that the WISHE‐moisture mode theory is in agreement with the reanalysis‐derived climatological MJO. Reanalysis and OAFlux surface latent heat fluxes are in agreement with the WISHE‐moisture mode theory. Although meridional surface winds seem to contribute negatively to the surface latent heat flux anomaly, we show that their effect is secondary in the region of enhanced surface latent heat fluxes which moisten the boundary layer and lead to the propagation of the MJO.
-
Abstract A recently developed linear model of eastward-propagating disturbances has two separate unstable modes: convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and slow, MJO-like modes destabilized by cloud–radiation interaction and driven eastward by surface enthalpy fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to include higher-order modes and show that planetary-scale low-frequency waves with more complex structures can also be amplified by cloud–radiation interactions. While most of these waves survive the WTG approximation, their frequencies and growth rates are seriously compromised by that approximation. Applying instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes. For small cloud–radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are destabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.more » « less
-
null (Ed.)Abstract This study derives a complete set of equatorially confined wave solutions from an anelastic equation set with the complete Coriolis terms, which include both the vertical and meridional planetary vorticity. The propagation mechanism can change with the effective static stability. When the effective static stability reduces to neutral, buoyancy ceases, but the role of buoyancy as an eastward-propagation mechanism is replaced by the compressional beta effect (i.e., vertical density-weighted advection of the meridional planetary vorticity). For example, the Kelvin mode becomes a compressional Rossby mode. Compressional Rossby waves are meridional vorticity disturbances that propagate eastward owing to the compressional beta effect. The compressional Rossby wave solutions can serve as a benchmark to validate the implementation of the nontraditional Coriolis terms (NCTs) in numerical models; with an effectively neutral condition and initial large-scale disturbances given a half vertical wavelength spanning the troposphere on Earth, compressional Rossby waves are expected to propagate eastward at a phase speed of 0.24 m s −1 . The phase speed increases with the planetary rotation rate and the vertical wavelength and also changes with the density scale height. Besides, the compressional beta effect and the meridional vorticity tendency are reconstructed using reanalysis data and regressed upon tropical precipitation filtered for the Madden–Julian oscillation (MJO). The results suggest that the compressional beta effect contributes 10.8% of the meridional vorticity tendency associated with the MJO in terms of the ratio of the minimum values.more » « less