skip to main content


Title: The near-Sun streamer belt solar wind: turbulence and solar wind acceleration
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R ⊙ , allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP’s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with a spectral index close to –5/3 rather than –3/2), a lower Alfvénicity, and a ‘1∕ f ’ break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ≈4° from the HCS, suggesting ≈8° as the full-width of the streamer belt wind at these distances. While the majority of the Alfvénic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.  more » « less
Award ID(s):
1752827
NSF-PAR ID:
10319705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
650
ISSN:
0004-6361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The exact coronal origin of the slow-speed solar wind has been under debate for decades in the Heliophysics community. Besides the solar wind speed, the heavy ion composition, including the elemental abundances and charge state ratios, are widely used as diagnostic tool to investigate the coronal origins of the slow wind. In this study, we recognize a subset of slow speed solar wind that is located on the upper boundary of the data distribution in the O7+/O6+ versus C6+/C5+ plot (O-C plot). In addition, in this wind the elemental abundances relative to protons, such as N/P, O/P, Ne/P, Mg/P, Si/P, S/P, Fe/P, He/P, and C/P are systemically depleted. We compare these winds (“upper depleted wind” or UDW hereafter) with the slow winds that are located in the main stream of the O-C plot and possess comparable Carbon abundance range as the depletion wind (“normal-depletion-wind”, or NDW hereafter). We find that the proton density in the UDW is about 27.5% lower than in the NDW. Charge state ratios of O7+/O6+, O7+/O, and O8+/O are decreased by 64.4%, 54.5%, and 52.1%, respectively. The occurrence rate of these UDW is anti-correlated with solar cycle. By tracing the wind along PFSS field lines back to the Sun, we find that the coronal origins of the UDW are more likely associated with quiet Sun regions, while the NDW are mainly associated with active regions and HCS-streamer. 
    more » « less
  2. Abstract The Parker Solar Probe (PSP) routinely observes magnetic field deflections in the solar wind at distances less than 0.3 au from the Sun. These deflections are related to structures commonly called “switchbacks” (SBs), whose origins and characteristic properties are currently debated. Here, we use a database of visually selected SB intervals—and regions of solar wind plasma measured just before and after each SB—to examine plasma parameters, turbulent spectra from inertial to dissipation scales, and intermittency effects in these intervals. We find that many features, such as perpendicular stochastic heating rates and turbulence spectral slopes are fairly similar inside and outside of SBs. However, important kinetic properties, such as the characteristic break scale between the inertial to dissipation ranges differ inside and outside these intervals, as does the level of intermittency, which is notably enhanced inside SBs and in their close proximity, most likely due to magnetic field and velocity shears observed at the edges. We conclude that the plasma inside and outside of an SB, in most of the observed cases, belongs to the same stream, and that the evolution of these structures is most likely regulated by kinetic processes, which dominate small-scale structures at the SB edges. 
    more » « less
  3. Abstract

    Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we investigate the evolution of turbulence in the Earth’s magnetosheath, a plasma system sharing many properties with the solar wind. The near-Earth space environment is being explored by multiple spacecraft missions, which may allow us to trace the evolution of magnetosheath fluctuations with simultaneous measurements at different distances from their origin, the Earth’s bow shock. We compare ARTEMIS and Magnetospheric Multiscale (MMS) Mission measurements in the Earth magnetosheath and Parker Solar Probe measurements of the solar wind at different radial distances. The comparison is supported by three numerical simulations of the magnetosheath magnetic and plasma fluctuations: global hybrid simulation resolving ion kinetic and including effects of Earth’s dipole field and realistic bow shock, hybrid and Hall-MHD simulations in expanding boxes that mimic the magnetosheath volume expansion with the radial distance from the dayside bow shock. The comparison shows that the magnetosheath can be considered as a miniaturized version of the solar wind system with much stronger plasma thermal anisotropy and an almost equal amount of forward and backward propagating Alfvén waves. Thus, many processes, such as turbulence development and kinetic instability contributions to plasma heating, occurring on slow timescales and over large distances in the solar wind, occur more rapidly in the magnetosheath and can be investigated in detail by multiple near-Earth spacecraft.

     
    more » « less
  4. null (Ed.)
    During three of its first five orbits around the Sun, Parker Solar Probe (PSP) crossed the large-scale heliospheric current sheet (HCS) multiple times and provided unprecedented detailed plasma and field observations of the near-Sun HCS. We report the common detections by PSP of reconnection exhaust signatures in the HCS at heliocentric distances of 29.5–107 solar radii during encounters 1, 4, and 5. Both sunward and antisunward-directed reconnection exhausts were observed. In the sunward reconnection exhausts, PSP detected counterstreaming strahl electrons, indicating that HCS reconnection resulted in the formation of closed magnetic field lines with both ends connected to the Sun. In the antisunward exhausts, PSP observed dropouts of strahl electrons, consistent with the reconnected HCS field lines being disconnected from the Sun. The common detection of reconnection in the HCS suggests that reconnection is almost always active in the HCS near the Sun. Furthermore, the occurrence of multiple long-duration partial crossings of the HCS suggests that HCS reconnection could produce chains of large bulges with spatial dimensions of up to several solar radii. The finding of the prevalence of reconnection in the HCS is somewhat surprising since PSP has revealed that the HCS is much thicker than the kinetic scales required for reconnection onset. The observations are also in stark contrast with the apparent absence of reconnection in most of the small-scale and much more intense current sheets encountered near perihelia, many of which are associated with “switchbacks”. Thus, the PSP findings suggest that large-scale dynamics, either locally in the solar wind or within the coronal source of the HCS (at the tip of helmet streamers), plays a critical role in triggering reconnection onset. 
    more » « less
  5. null (Ed.)
    Context. The Parker Solar Probe (PSP) measures solar wind protons and electrons near the Sun. To study the thermodynamic properties of electrons and protons, we include electron effects, such as distributed turbulent heating between protons and electrons, Coulomb collisions between protons and electrons, and heat conduction of electrons. Aims. We develop a general theoretical model of nearly incompressible magnetohydrodynamic (NI MHD) turbulence coupled with a solar wind model that includes electron pressure and heat flux. Methods. It is important to note that 60% of the turbulence energy is assigned to proton heating and 40% to electron heating. We use an empirical expression for the electron heat flux. We derived a nonlinear dissipation term for the residual energy that includes both the Alfvén effect and the turbulent small-scale dynamo effect. Similarly, we obtained the NI/slab time-scale in an NI MHD phenomenology to use in the derivation of the nonlinear term that incorporates the Alfvén effect. Results. A detailed comparison between the theoretical model solutions and the fast solar wind measured by PSP and Helios 2 shows that they are consistent. The results show that the nearly incompressible NI/slab turbulence component describes observations of the fast solar wind periods when the solar wind flow is aligned or antialigned with the magnetic field. 
    more » « less