skip to main content


Title: Isolation of Stable Borepin Radicals and Anions
Abstract

Borepin, a 7‐membered boron‐containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron‐deficient borepins are well‐established, reduced electron‐rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a,2 b) and anion (3 a,3 b) complexes, which have been synthesized by potassium graphite (KC8) reduction of cyclic(alkyl)(amino) carbene‐dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X‐ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.

 
more » « less
Award ID(s):
2046544 2018870
NSF-PAR ID:
10446089
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
23
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Borepin, a 7‐membered boron‐containing heterocycle, has become an emerging molecular platform for the development of new materials and optoelectronics. While electron‐deficient borepins are well‐established, reduced electron‐rich species have remained elusive. Herein we report the first isolable, crystalline borepin radical (2 a,2 b) and anion (3 a,3 b) complexes, which have been synthesized by potassium graphite (KC8) reduction of cyclic(alkyl)(amino) carbene‐dibenzo[b,d]borepin precursors. Borepin radicals and anions have been characterized by EPR or NMR, elemental analysis, X‐ray crystallography, and cyclic voltammetry. In addition, the bonding features have been investigated computationally using density functional theory.

     
    more » « less
  2. Abstract

    A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry.

     
    more » « less
  3. Abstract

    The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 af, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 af, 97–54 %). Complexes3 adare also available from2 adand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 af; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 afare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.

     
    more » « less
  4. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost.

    The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition.

    In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs.

    Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness.

    References

    A. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.

    Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).

    V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).

    H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).

    T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019).

     
    more » « less
  5. Abstract

    The intramolecular “inverse” frustrated Lewis pairs (FLPs) of general formula 1‐BR2‐2‐[(Me2N)2C=N]‐C6H4(36) [BR2=BMes2(3), BC12H8, (4), BBN (5), BBNO (6)] were synthesized and structurally characterized by multinuclear NMR spectroscopy and X‐ray analysis. These novel types of pre‐organized FLPs, featuring strongly basic guanidino units rigidly linked to weakly Lewis acidic boryl moieties via anortho‐phenylene linker, are capable of activating H−H, C−H, N−H, O−H, Si−H, B−H and C=O bonds.4and5deprotonated terminal alkynes and acetylene to form the zwitterionic borates 1‐(RC≡C‐BR2)‐2‐[(Me2N)2C=NH]‐C6H4(R=Ph, H) and reacted with ammonia, BnNH2and pyrrolidine, to generate the FLP adducts 1‐(R2HN→BR2)‐2‐[(Me2N)2C=NH]‐C6H4, where the N‐H functionality is activated by intramolecular H‐bond interactions. In addition,5was found to rapidly add across the double bond of H2CO, PhCHO and PhNCO to form cyclic zwitterionic guanidinium borates in excellent yields. Likewise,5is capable of cleaving H2, HBPin and PhSiH3to form various amino boranes. Collectively, the results demonstrate that these new types of intramolecular FLPs featuring weakly Lewis acidic boryl and strongly basic guanidino moieties are as potent as conventional intramolecular FLPs with strongly Lewis acidic units in activating small molecules.

     
    more » « less