skip to main content


Title: Temperature-dependent effects on fecundity in a serial broadcast spawning fish after whole-life high CO2 exposure
Abstract Experiments examining fish sensitivities to future oceanic CO2 levels have greatly expanded over past decades and identified many potentially affected traits. Curiously, data on reproductive trait responses to high CO2 are still scarce, despite their strong link to Darwinian fitness and thus to population vulnerability to ocean acidification. We conducted two rearing experiments on the first broadcast-spawning marine fish model (Atlantic silverside, Menidia menidia) to examine how long-term and novel whole life-cycle exposures to predicted future CO2 levels (∼2,000 µatm) affect laboratory spawning, temperature-specific reproductive investment, fecundity, and size distributions of maturing oocytes. At low temperatures (17°C), female body size and therefore potential fecundity (FPot, oocytes/female) slightly increased with CO2, while relative fecundity (FRel, oocytes/g female) remained unaffected. At high temperatures (24°C), high CO2 substantially reduced both FPot (−19%) and FRel (−28%) relative to control treatments. Irrespective of CO2, females at 24°C grew larger and heavier than those at 17°C, and although larger females produced larger oocytes at some developmental stages, they also had lower gonadosomatic indices and lower FRel. Our findings contrast with most previous studies and thus highlight the need to investigate reproductive impacts of increasing CO2 on multiple fish species with contrasting life history strategies.  more » « less
Award ID(s):
1756751
NSF-PAR ID:
10319866
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Browman, Howard
Date Published:
Journal Name:
ICES Journal of Marine Science
Volume:
78
Issue:
10
ISSN:
1054-3139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Concurrent ocean warming and acidification demand experimental approaches that assess biological sensitivities to combined effects of these potential stressors. Here, we summarize five CO2 × temperature experiments on wild Atlantic silverside, Menidia menidia, offspring that were reared under factorial combinations of CO2 (nominal: 400, 2200, 4000, and 6000 µatm) and temperature (17, 20, 24, and 28 °C) to quantify the temperature-dependence of CO2 effects in early life growth and survival. Across experiments and temperature treatments, we found few significant CO2 effects on response traits. Survival effects were limited to a single experiment, where elevated CO2 exposure reduced embryo survival at 17 and 24 °C. Hatch length displayed CO2 × temperature interactions due largely to reduced hatch size at 24 °C in one experiment but increased length at 28 °C in another. We found no overall influence of CO2 on larval growth or survival to 9, 10, 15 and 13–22 days post-hatch, at 28, 24, 20, and 17 °C, respectively. Importantly, exposure to cooler (17 °C) and warmer (28 °C) than optimal rearing temperatures (24 °C) in this species did not appear to increase CO2 sensitivity. Repeated experimentation documented substantial inter- and intra-experiment variability, highlighting the need for experimental replication to more robustly constrain inherently variable responses. Taken together, these results demonstrate that the early life stages of this ecologically important forage fish appear largely tolerate to even extreme levels of CO2 across a broad thermal regime. 
    more » « less
  2. In high-latitude environments where seasonal changes include periods of harsh conditions, many arthropods enter diapause, a period of dormancy that is hormonally regulated. Diapause is characterized by very low metabolism, resistance to environmental stress, and developmental arrest. It allows an organism to optimize the timing of reproduction by synchronizing offspring growth and development with periods of high food availability. In species that enter dormancy as pre-adults or adults, termination of diapause is marked by the resumption of physiological processes, an increase in metabolic rates and once transitioned into adulthood for females, the initiation of oogenesis. In many cases, individuals start feeding again and newly acquired resources become available to fuel egg production. However, in the subarctic capital-breeding copepod Neocalanus flemingeri, feeding is decoupled from oogenesis. Thus, optimizing reproduction limited by fixed resources such that all eggs are of high quality and fully-provisioned, requires regulation of the number of oocytes. However, it is unknown if and how this copepod limits oocyte formation. In this study, the phase in oocyte production by post-diapause females that involved DNA replication in the ovary and oviducts was examined using incubation in 5-Ethynyl-2′-deoxyuridine (EdU). Both oogonia and oocytes incorporated EdU, with the number of EdU-labeled cells peaking at 72 hours following diapause termination. Cell labeling with EdU remained high for two weeks, decreasing thereafter with no labeling detected by four weeks post diapause, and three to four weeks before spawning of the first clutch of eggs. The results suggest that oogenesis is sequential in N. flemingeri with formation of new oocytes starting within 24 hours of diapause termination and limited to the first few weeks. Lipid consumption during diapause was minimal and relatively modest initially. This early phase in the reproductive program precedes mid-oogenesis and vitellogenesis 2, when oocytes increase in size and accumulate yolk and lipid reserves. By limiting DNA replication to the initial phase, the females effectively separate oocyte production from oocyte provisioning. A sequential oogenesis is unlike the income-breeder strategy of most copepods in which oocytes at all stages of maturation are found concurrently in the reproductive structures. 
    more » « less
  3. Synopsis

    In high-latitude environments where seasonal changes include periods of harsh conditions, many arthropods enter diapause, a period of dormancy that is hormonally regulated. Diapause is characterized by very low metabolism, resistance to environmental stress, and developmental arrest. It allows an organism to optimize the timing of reproduction by synchronizing offspring growth and development with periods of high food availability. In species that enter dormancy as pre-adults or adults, termination of diapause is marked by the resumption of physiological processes, an increase in metabolic rates and once transitioned into adulthood for females, the initiation of oogenesis. In many cases, individuals start feeding again and newly acquired resources become available to fuel egg production. However, in the subarctic capital-breeding copepod Neocalanus flemingeri, feeding is decoupled from oogenesis. Thus, optimizing reproduction limited by fixed resources such that all eggs are of high quality and fully-provisioned, requires regulation of the number of oocytes. However, it is unknown if and how this copepod limits oocyte formation. In this study, the phase in oocyte production by post-diapause females that involved DNA replication in the ovary and oviducts was examined using incubation in 5-Ethynyl-2′-deoxyuridine (EdU). Both oogonia and oocytes incorporated EdU, with the number of EdU-labeled cells peaking at 72 hours following diapause termination. Cell labeling with EdU remained high for two weeks, decreasing thereafter with no labeling detected by four weeks post diapause, and three to four weeks before spawning of the first clutch of eggs. The results suggest that oogenesis is sequential in N. flemingeri with formation of new oocytes starting within 24 hours of diapause termination and limited to the first few weeks. Lipid consumption during diapause was minimal and relatively modest initially. This early phase in the reproductive program precedes mid-oogenesis and vitellogenesis 2, when oocytes increase in size and accumulate yolk and lipid reserves. By limiting DNA replication to the initial phase, the females effectively separate oocyte production from oocyte provisioning. A sequential oogenesis is unlike the income-breeder strategy of most copepods in which oocytes at all stages of maturation are found concurrently in the reproductive structures.

     
    more » « less
  4. Ocean acidification is occurring in conjunction with warming and deoxygenation as a result of anthropogenic greenhouse gas emissions. Multistressor experiments are critically needed to better understand the sensitivity of marine organisms to these concurrent changes. Growth and survival responses to acidification have been documented for many marine species, but studies that explore underlying physiological mechanisms of carbon dioxide (CO2) sensitivity are less common. We investigated oxygen consumption rates as proxies for metabolic responses in embryos and newly hatched larvae of an estuarine forage fish (Atlantic silverside, Menidia menidia) to factorial combinations of CO2×temperature or CO2×oxygen. Metabolic rates of embryos and larvae significantly increased with temperature, but partial pressure of CO2 (PCO2) alone did not affect metabolic rates in any experiment. However, there was a significant interaction between PCO2 and partial pressure of oxygen (PO2) in embryos, because metabolic rates were unaffected by PO2 level at ambient PCO2, but decreased with declining PO2 under elevated PCO2. For larvae, however, PCO2 and PO2 had no significant effect on metabolic rates. Our findings suggest high individual variability in metabolic responses to high PCO2, perhaps owing to parental effects and time of spawning. We conclude that early life metabolism is largely resilient to elevated PCO2 in this species, but that acidification likely influences energetic responses and thus vulnerability to hypoxia. 
    more » « less
  5. ABSTRACT

    Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness.

     
    more » « less