skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B 3 N 3 Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties
We herein describe a new design principle to achieve B/N-doped cyclophane where an electron-donor block of three triarylamines (Ar3N) and an acceptor block of three triarylboranes (Ar3B) are spatially separated on opposite sides of the π-extended ring system. DFT computations revealed the distinct electronic structure of the block-type macrocycle MC-b-B3N3 with a greatly enhanced dipole moment and reduced HOMO–LUMO energy gap in comparison to its analogue with alternating B and N sites, MC-alt- B3N3. The unique arrangement of borane acceptor Ar3B and amine donor Ar3N components in MC-b-B3N3 induces exceptionally strong intramolecular charge transfer in the excited state, which is reflected in a largely red-shifted luminescence at 612 nm in solution. The respective linear open-chain oligomer L-b-B3N3 was also synthesized for comparison. Our new approach to donor–acceptor macrocycles offers important fundamental insights and opens up a new avenue to unique optoelectronic materials.  more » « less
Award ID(s):
1954122
PAR ID:
10319886
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In order to explore how σ-hole potentials, as evaluated by molecular electrostatic potential (MEP) calculations, affect the ability of halogen atoms to engage in structure-directing intermolecular interactions, we synthesized four series of ethynyl halogen-substituted amide containing pyridines (activated targets); ( N -(pyridin-2-yl)benzamides (Bz-act-X), N -(pyridin-2-yl)picolinamides (2act-X), N -(pyridin-2-yl)nicotinamides (3act-X) and N -(pyridin-2-yl) isonicotinamides (4act-X), where X = Cl/Br/I. The molecules are deliberately equipped with three distinctly different halogen-bond acceptor sites, π, N(pyr), and OC, to determine binding site preferences of different halogen-bond donors. Crystallographic data for ten (out of a possible twelve) new compounds were thus analyzed and compared with data for the corresponding unactivated species. The calculated MEPs of all the halogen atoms were higher in the activated targets in comparison to the unactivated targets and were in the order of iodine ≈ chloroethynyl < bromoethynyl < iodoethynyl. This increased positive σ-hole potential led to a subsequent increase in propensity for halogen-bond formation. Two of the four chloroethynyl structures showed halogen bonding, and all three of the structurally characterized bromoethynyl species engaged in halogen bonding. The analogous unactived species showed no halogen bonds. Each chloroethynyl donor selected a π-cloud as acceptor and the bromoethynyl halogen-bond donors opted for either π or N(pyr) sites, whereas all halogen bonds involving an iodoethynyl halogen-bond donor (including both polymorphs of Bz-act-I ) engaged exclusively with a N(pyr) acceptor site. 
    more » « less
  2. Abstract [3+n]‐Cycloaddition reactions that employ donor‐acceptor cyclopropanes using either chiral catalysts and racemic cyclopropanes or achiral catalysts and chiral, non‐racemic, cyclopropanes have become useful transformations for the construction of carbocyclic and heterocyclic compounds, with both processes offering mechanistic and structural advantages in ring formation. Although the vast majority of asymmetric cycloaddition reactions of donor‐acceptor cyclopropanes have been performed with racemic cyclopropane compounds catalyzed by Lewis acids with chiral ligands, optically active cyclopropane compounds can serve the same role using Lewis acids without chiral ligands. This review covers the use of chiral catalysts with racemic donor‐acceptor cyclopropanes and the use of chiral non‐racemic donor‐acceptor cyclopropanes with achiral Lewis acid catalysts. 
    more » « less
  3. Abstract An increased understanding of how the acceptor site in Gcn5‐relatedN‐acetyltransferase (GNAT) enzymes recognizes various substrates provides important clues for GNAT functional annotation and their use as chemical tools. In this study, we explored how the PA3944 enzyme fromPseudomonas aeruginosarecognizes three different acceptor substrates, including aspartame, NANMO, and polymyxin B, and identified acceptor residues that are critical for substrate specificity. To achieve this, we performed a series of molecular docking simulations and tested methods to identify acceptor substrate binding modes that are catalytically relevant. We found that traditional selection of best docking poses by lowest S scores did not reveal acceptor substrate binding modes that were generally close enough to the donor for productive acetylation. Instead, sorting poses based on distance between the acceptor amine nitrogen atom and donor carbonyl carbon atom placed these acceptor substrates near residues that contribute to substrate specificity and catalysis. To assess whether these residues are indeed contributors to substrate specificity, we mutated seven amino acid residues to alanine and determined their kinetic parameters. We identified several residues that improved the apparent affinity and catalytic efficiency of PA3944, especially for NANMO and/or polymyxin B. Additionally, one mutant (R106A) exhibited substrate inhibition toward NANMO, and we propose scenarios for the cause of this inhibition based on additional substrate docking studies with R106A. Ultimately, we propose that this residue is a key gatekeeper between the acceptor and donor sites by restricting and orienting the acceptor substrate within the acceptor site. 
    more » « less
  4. Light induced charge separation in a newly synthesized triphenylamine–thiophene-Sc 3 N@ I h -C 80 donor–acceptor conjugate and its C 60 analog, triphenylamine–thiophene-C 60 conjugate is reported, and the significance of the thiophene spacer in promoting electron transfer events is unraveled. 
    more » « less
  5. High-performance hybrid graphene photodetectors were prepared with endohedral fullerenes deposited on graphene using electrophoretic methods for the first time. Endohedral Sc 3 N@C 80 , which acts as an electron acceptor, was used and the ensuing electronic and optoelectronic properties were measured. Another endohedral fullerene, La@C 82 , was also adsorbed on graphene, which acts as an electron donor. Upon optical illumination, for the Sc 3 N@C 80 –graphene hybrid, the photoinduced free holes are injected into graphene, increasing the hole carrier concentration in graphene, while the photoexcited electrons remain in Sc 3 N@C 80 ; this leads to a high photoresponsivity  of ∼10 9 A W −1 , detectivity D of ∼10 15 Jones, and external quantum efficiency EQE ∼ 10 9 % for the Sc 3 N@C 80 –graphene hybrid. This  is ∼10 times higher compared to other reports of quantum dot-graphene and few layer MoS 2 –graphene heterostructures. Similarly, for the La@C 82 –graphene hybrid,  ∼ 10 8 A W −1 , D ∼ 10 14 Jones, and EQE ∼ 10 6 % were achieved, with electrons being injected into graphene. The exceptional performance gains achieved with both types of hybrid structures confirms the potential of endohedrals to dope graphene for high performance optoelectronic devices using a facile and scalable fabrication process. 
    more » « less