skip to main content


Title: Palladium(0) complexes of diferrocenylmercury diphosphines: synthesis, X-ray structure analyses, catalytic isomerization, and C–Cl bond activation
Palladium(0) phosphine complexes are of great importance as catalysts in numerous bond formation reactions that involve oxidative addition of substrates. Highly active catalysts with labile ligands are of particular interest but can be challenging to isolate and structurally characterize. We investigate here the synthesis and chemical reactivity of Pd 0 complexes that contain geometrically adaptable diferrocenylmercury-bridged diphosphine chelate ligands (L) in combination with a labile dibenzylideneacetone (dba) ligand. The diastereomeric diphosphines 1a (p S p R , meso -isomer) and 1b (p S p S -isomer) differ in the orientation of the ferrocene moieties relative to the central Ph 2 PC 5 H 3 –Hg–C 5 H 3 PPh 2 bridging entity. The structurally distinct trigonal LPd 0 (dba) complexes 2a ( meso ) and 2b (p S p S ) are obtained upon treatment with Pd(dba) 2 . A competition reaction reveals that 1b reacts faster than 1a with Pd(dba) 2 . Unexpectedly, catalytic interconversion of 1a ( meso ) into 1b ( rac ) is observed at room temperature in the presence of only catalytic amounts of Pd(dba) 2 . Both Pd 0 complexes, 2a and 2b , readily undergo oxidative addition into the C–Cl bond of CH 2 Cl 2 at moderate temperatures with formation of the square-planar trans -chelate complexes LPd II Cl(CH 2 Cl) ( 3a , 3b ). Kinetic studies reveal a significantly higher reaction rate for the meso -isomer 2a in comparison to (p S p S )- 2b .  more » « less
Award ID(s):
1229030 0443538
NSF-PAR ID:
10319897
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
13
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two novel sulfonated CNN‐pincer ligands1band1cand the corresponding chloro and aqua complexes K[CNNLPtCl] andCNNLPt(H2O),3b3cand2b2c, were prepared and fully characterized including single crystal X‐ray diffraction. Along with the previously described complexes2aand3a, the derivatives of a CNN pincer ligand1a, these complexes form a family of structurally similar compounds where the pincer core rigidity increases in the series2a (3a)<2b (3b)<2c(3c), as deduced from their XRD data. The increased ligand rigidity affects the aqua ligand dissociation energy of theCNNLPt(H2O) complexes, as it follows from DFT calculations and as is reflected in the increased reactivity of the aqua complexes2a,2band2cin processes that involve aqua ligand loss. Among these processes the formation of the presumed dinuclear complexesCNNL2Pt2and, importantly, catalytic C−D bond cleavage in C6D6were studied in 2,2,2‐trifluoroethanol solutions. The C−D bond cleavage reactivity was quantified as the rate of H/D exchange between C6D6and CF3CH2OH at 80 °C.

     
    more » « less
  2. null (Ed.)
    Described herein is the synthesis and characterization of macrocyclic Cr III mono-alkynyl complexes. By using the meso -form of the tetraazamacrocycle HMC (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), trans -[Cr(HMC)(C 2 Ph)Cl]OTf ( 1a ), trans -[Cr(HMC)(C 2 Np)Cl]OTf ( 2a ), trans -[Cr(HMC)(C 2 C 6 H 4 t Bu)Cl]OTf ( 3a ), and trans -[Cr(HMC)(C 2 (3,5-Cl 2 C 6 H 3 ))Cl]OTf ( 4a ) complexes have been realized. These complexes were synthesized in high yield through the reaction of trans -[Cr( meso -HMC)(C 2 Ar) 2 ]OTf ( 1b–4b ) with stoichiometric amounts of methanolic HCl. Single crystal X-ray diffraction showed that the trans -stereochemistry and pseudo-octahedral geometry is retained in the desired mono-alkynyl complexes. The absorption spectra of complexes 1a–4a display d–d bands with distinct vibronic progressions that are slightly red shifted from trans -[Cr(HMC)(C 2 Ar) 2 ] + with approximately halved molar extinction coefficients. Time-delayed measurements of the emission spectra for complexes 1a–4a at 77 K revealed phosphorescence with lifetimes ranging between 343 μs ( 4a ) and 397 μs ( 1a ). The phosphorescence spectra of 1a–4a also exhibit more structuring than the bis-alkynyl complexes due to a strengthened vibronic coupling between the Cr III metal center and alkynyl ligands. 
    more » « less
  3. Mononuclear heteroleptic complexes [Fe(tpma)(bimz)](ClO4)2 (1a), [Fe(tpma)(bimz)](BF4)2 (1b), [Fe(bpte)(bimz)](ClO4)2 (2a), and [Fe(bpte)(bimz)](BF4)2 (2b) (tpma = tris(2-pyridylmethyl)amine, bpte = S,S′-bis(2-pyridylmethyl)-1,2-thioethane, bimz = 2,2′-biimidazoline) were prepared by reacting the corresponding Fe(II) salts with stoichiometric amounts of the ligands. All complexes exhibit temperature-induced spin crossover (SCO), but the SCO temperature is substantially lower for complexes 1a and 1b as compared to 2a and 2b, indicating the stronger ligand field afforded by the N2S2-coordinating bpte ligand relative to the N4-coordinating tpma. Our findings suggest that ligands with mixed N/S coordination can be employed to discover new SCO complexes and to tune the transition temperature of known SCO compounds by substituting for purely N-coordinating ligands. 
    more » « less
  4. Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range of catalysts employing Pd( ii ), Cu( i ), Ni( ii ), Fe(0), Zn( ii ), Ag( i ), and Au( i / iii ) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki–Miyaura cross-coupling reaction, C–H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K( i ), Al( iii ), Zn( ii ), Sn( ii ), Ge( ii ), and Si( ii / iv ). Among them, K( i ), Al( iii ), and Zn( ii ) complexes were used for the polymerization of caprolactone and rac -lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO 2 ), nitrous oxide (N 2 O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO 2 and the catalytic reduction of carbon dioxide, including atmospheric CO 2 , into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs. 
    more » « less
  5. Two cis -dioxomolybdenum complexes based on salan ligands with different backbones are reported. The first complex, dioxido{2,2′-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate, [Mo(C 20 H 18 N 2 O 2 )O 2 ]·2C 3 H 7 NO ( Ph LMoO 2 , 1b ), features a phenyl backbone, while the second complex, (6,6′-{[(cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di- tert -butylphenolato))dioxidomolybdenum(VI) methanol disolvate, [Mo(C 36 H 56 N 2 O 2 )O 2 ]·2CH 3 OH ( Cy LMoO 2 , 2b ), is based on a cyclohexyl backbone. These complexes crystallized as solvated species, 1b ·2DMF and 2b ·2MeOH. The salan ligands Ph LH 2 ( 1a ) and Cy LH 2 ( 2a ) coordinate to the molybdenum center in these complexes 1b and 2b in a κ 2 N ,κ 2 O fashion, forming a distorted octahedral geometry. The Mo—N and Mo—O distances are 2.3475 (16) and 1.9567 (16) Å, respectively, in 1b while the corresponding measurements are Mo—N = 2.3412 (12) Å, and Mo—O = 1.9428 (10) Å for 2b . A key geometrical feature is that the N—Mo—N angle of 72.40 (4)° in Cy LMoO 2 is slightly less than that of the Ph LMoO 2 angle of 75.18 (6)°, which is attributed to the flexibility of the cyclohexane ring between the nitrogen as compared to the rigid phenyl ring in the Ph LMoO 2 . 
    more » « less