skip to main content


Title: Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons
Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a “top-down” scaffolding event. Further, we identify an F-actin population – stable base clusters – that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals.  more » « less
Award ID(s):
1659556
NSF-PAR ID:
10319969
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Development
ISSN:
0950-1991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prigent, Claude (Ed.)
    The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell. 
    more » « less
  2. Imaging beyond the diffraction limit barrier has attracted wide attention due to the ability to resolve previously hidden image features. Of the various super-resolution microscopy techniques available, a particularly simple method called saturated excitation microscopy (SAX) requires only simple modification of a laser scanning microscope: The illumination beam power is sinusoidally modulated and driven into saturation. SAX images are extracted from the harmonics of the modulation frequency and exhibit improved spatial resolution. Unfortunately, this elegant strategy is hindered by the incursion of shot noise that prevents high-resolution imaging in many realistic scenarios. Here, we demonstrate a technique for super-resolution imaging that we call computational saturated absorption (CSA) in which a joint deconvolution is applied to a set of images with diversity in spatial frequency support among the point spread functions (PSFs) used in the image formation with saturated laser scanning fluorescence microscopy. CSA microscopy allows access to the high spatial frequency diversity in a set of saturated effective PSFs, while avoiding image degradation from shot noise.

     
    more » « less
  3. Sensory axons must traverse a spinal cord glia limitans to connect the brain with the periphery. The fundamental mechanism of how these axons enter the spinal cord is still debatable; both Ramon y Cajal’s battering ram hypothesis and a boundary cap model have been proposed. To distinguish between these hypotheses, we visualized the entry of pioneer axons into the dorsal root entry zone (DREZ) with time-lapse imaging in zebrafish. Here, we identify that DRG pioneer axons enter the DREZ before the arrival of neural crest cells at the DREZ. Instead, actin-rich invadopodia in the pioneer axon are necessary and sufficient for DREZ entry. Using photoactivable Rac1, we demonstrate cell-autonomous functioning of invasive structures in pioneer axon spinal entry. Together these data support the model that actin-rich invasion structures dynamically drive pioneer axon entry into the spinal cord, indicating that distinct pioneer and secondary events occur at the DREZ. 
    more » « less
  4. Abstract

    Visualizing fluorescence‐tagged molecules is a powerful strategy that can reveal the complex dynamics of the cell. One robust and broadly applicable method is immunofluorescence microscopy, in which a fluorescence‐labeled antibody binds the molecule of interest and then the location of the antibody is determined by fluorescence microscopy. The effective application of this technique includes several considerations, such as the nature of the antigen, specificity of the antibody, permeabilization and fixation of the specimen, and fluorescence imaging of the cell. Although each protocol will require fine‐tuning depending on the cell type, antibody, and antigen, there are steps common to nearly all applications. This article provides protocols for staining the cytoskeleton and organelles in two very different kinds of cells: flat, adherent fibroblasts and thick, free‐swimmingTetrahymenacells. Additional protocols enable visualization with widefield, laser scanning confocal, and eSRRF super‐resolution fluorescence microscopy. © 2023 Wiley Periodicals LLC.

    Basic Protocol 1: Immunofluorescence staining of adherent cells such as fibroblasts

    Basic Protocol 2: Immunofluorescence of suspension cells such asTetrahymena

    Basic Protocol 3: Visualizing samples with a widefield fluorescence microscope

    Alternate Protocol 1: Staining suspension cells adhered to poly‐l‐lysine‐coated coverslips

    Alternate Protocol 2: Visualizing samples with a laser scanning confocal microscope

    Alternate Protocol 3: Generating super‐resolution images with SRRF microscopy

     
    more » « less
  5. Recent experimental and theoretical work by our group has shown that the self-organization of the brain serotonergic matrix is strongly driven by the spatiotemporal dynamics of single serotonergic axons (fibers). The trajectories of these axons are often stochastic in character and can be described by step-wise random walks or time-continuous processes (e.g., fractional Brownian motion). The success of these modeling efforts depends on experimental data that can validate the proposed mathematical frameworks and constrain their parameters. In particular, further progress requires reliable experimental tracking of individual serotonergic axons in time and space. Visualizing this dynamic behavior in vivo is currently extremely difficult because of the high axon densities and other resolution limitations. In this study, we used in vitro systems of mouse primary brainstem neurons to examine serotonergic axons with unprecedented spatiotemporal precision. The high-resolution methods included confocal microscopy, STED super-resolution microscopy, and live imaging with holotomography. We demonstrate that the extension of developing serotonergic axons strongly relies on discrete attachments points on other, non-serotonergic neurons. These membrane anchors are remarkably stable but can be stretched into nano-scale tethers that accommodate the axon’s transitions from neuron to neuron, as it advances through neural tissue. We also show that serotonergic axons can be flat (ribbon-like) and produce screw-like rotations along their trajectory, perhaps to accommodate mechanical constraints. We conclude that the stochastic dynamics of serotonergic axons may be conditioned by the stochastic geometry of neural tissue and, consequently, may reflect it. Our current research includes hydrogels to better understand these processes in controlled artificial environments. Since serotonergic axons are nearly unique in their ability to regenerate in the adult mammalian brain and they support neural plasticity, this research not only advances fundamental neuroscience but can also inform efforts to restore injured neural tissue. This research was funded by NSF CRCNS (#1822517 and #2112862), NIMH (#MH117488), and the California NanoSystems Institute. 
    more » « less