A Bayesian phase I‐II design is presented that optimizes the dose of a new agent within predefined prognostic subgroups. The design is motivated by a trial to evaluate targeted agents for treating metastatic clear cell renal carcinoma, where a prognostic risk score defined by clinical variables and biomarkers is well established. Two clinical outcomes are used for dose‐finding, time‐to‐toxicity during a prespecified follow‐up period, and efficacy characterized by ordinal disease status evaluated at the end of follow‐up. A joint probability model is constructed for these outcomes as functions of dose and subgroup. The model performs adaptive clustering of adjacent subgroups having similar dose‐outcome distributions to facilitate borrowing information across subgroups. To quantify toxicity‐efficacy risk‐benefit trade‐offs that may differ between subgroups, the objective function is based on outcome utilities elicited separately for each subgroup. In the context of the renal cancer trial, a design is constructed and a simulation study is presented to evaluate the design's reliability, safety, and robustness, and to compare it to designs that either ignore subgroups or run a separate trial within each subgroup.
- Award ID(s):
- 2047631
- PAR ID:
- 10320024
- Date Published:
- Journal Name:
- Pharmaceutical Statistics
- ISSN:
- 1539-1604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A Bayesian phase I‐II dose‐finding design is presented for a clinical trial with four coprimary outcomes that reflect the actual clinical observation process. During a prespecified fixed follow‐up period, the times to disease progression, toxicity, and death are monitored continuously, and an ordinal disease status variable, including progressive disease (PD) as one level, is evaluated repeatedly by scheduled imaging. We assume a proportional hazards model with piecewise constant baseline hazard for each continuous variable and a longitudinal multinomial probit model for the ordinal disease status process and include multivariate patient frailties to induce association among the outcomes. A finite partition of the nonfatal outcome combinations during the follow‐up period is constructed, and the utility of each set in the partition is elicited. Posterior mean utility is used to optimize each patient's dose, subject to a safety rule excluding doses with an unacceptably high rate of PD, severe toxicity, or death. A simulation study shows that, compared with the proposed design, a simpler design based on commonly used efficacy and toxicity outcomes obtained by combining the four variables described above performs poorly and has substantially smaller probabilities of correctly choosing truly optimal doses and excluding truly unsafe doses.
-
Phase I clinical trials are the first step in drug development to test a new drug or drug combination on humans. Typical designs of Phase I trials use toxicity as the primary endpoint and aim to find the maximum tolerable dosage. However, these designs are poorly applicable for the development of cancer therapeutic vaccines because the expected safety concerns for these vaccines are not as much as cytotoxic agents. The primary objectives of a cancer therapeutic vaccine phase I trial thus often include determining whether the vaccine shows biologic activity and the minimum dose necessary to achieve a full immune or even clinical response. In this paper, we propose a new Bayesian phase I trial design that allows simultaneous evaluation of safety and immunogenicity outcomes. We demonstrate the proposed clinical trial design by both a numeric study and a therapeutic human papillomavirus vaccine trial.
-
Background: As our understanding of the etiology and mechanisms of cancer becomes more sophisticated and the number of therapeutic options increases, phase I oncology trials today have multiple primary objectives. Many such designs are now “seamless,” meaning that the trial estimates both the maximum tolerated dose and the efficacy at this dose level. Sponsors often proceed with further study only with this additional efficacy evidence. However, with this increasing complexity in trial design, it becomes challenging to articulate fundamental operating characteristics of these trials, such as (1) what is the probability that the design will identify an acceptable, that is., safe and efficacious, dose level? or (2) how many patients will be assigned to an acceptable dose level on average?
Methods: In this manuscript, we propose a new modular framework for designing and evaluating seamless oncology trials. Each module is comprised of either a dose assignment step or a dose-response evaluation, and multiple such modules can be implemented sequentially. We develop modules from existing phase I/II designs as well as a novel module for evaluating dose-response using a Bayesian isotonic regression scheme.
Results: We also demonstrate a freely available R package called seamlesssim to numerically estimate, by means of simulation, the operating characteristics of these modular trials.
Conclusions: Together, this design framework and its accompanying simulator allow the clinical trialist to compare multiple different candidate designs, more rigorously assess performance, better justify sample sizes, and ultimately select a higher quality design.
-
Abstract A Bayesian design is proposed for randomized phase II clinical trials that screen multiple experimental treatments compared to an active control based on ordinal categorical toxicity and response. The underlying model and design account for patient heterogeneity characterized by ordered prognostic subgroups. All decision criteria are subgroup specific, including interim rules for dropping unsafe or ineffective treatments, and criteria for selecting optimal treatments at the end of the trial. The design requires an elicited utility function of the two outcomes that varies with the subgroups. Final treatment selections are based on posterior mean utilities. The methodology is illustrated by a trial of targeted agents for metastatic renal cancer, which motivated the design methodology. In the context of this application, the design is evaluated by computer simulation, including comparison to three designs that conduct separate trials within subgroups, or conduct one trial while ignoring subgroups, or base treatment selection on estimated response rates while ignoring toxicity.