skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling Mesenchyme Tissue Remodeling via Spatial Arrangement of Mechanical Constraints
Tissue morphogenetic remodeling plays an important role in tissue repair and homeostasis and is often governed by mechanical stresses. In this study, we integrated an in vitro mesenchymal tissue experimental model with a volumetric contraction-based computational model to investigate how geometrical designs of tissue mechanical constraints affect the tissue remodeling processes. Both experimental data and simulation results verified that the standing posts resisted the bulk contraction of the tissues, leading to tissue thinning around the posts as gap extension and inward remodeling at the edges as tissue compaction. We changed the geometrical designs for the engineered mesenchymal tissues with different shapes of posts arrangements (triangle vs. square), different side lengths (6 mm vs. 8 mm), and insertion of a center post. Both experimental data and simulation results showed similar trends of tissue morphological changes of significant increase of gap extension and deflection compaction with larger tissues. Additionally, insertion of center post changed the mechanical stress distribution within the tissues and stabilized the tissue remodeling. This experimental-computational integrated model can be considered as a promising initiative for future mechanistic understanding of the relationship between mechanical design and tissue remodeling, which could possibly provide design rationale for tissue stability and manufacturing.  more » « less
Award ID(s):
1847149 2130192 1943798 1757749
PAR ID:
10320056
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
10
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundConventional needles lack active mechanisms for large tip deflection to bypass obstacles or guide through a desired trajectory in needle‐based procedures, compromising accuracy and effectiveness. MethodsAn active needle with a shape memory alloy (SMA) actuator was designed and evaluated by demonstrating deflections in tissue‐mimicking gels. Finite element simulation and real‐time needle tip deflection tracking in tissue‐mimicking gels were performed. ResultsThe active needle deflected 50 and 39 mm at 150 mm insertion depth in the liver and prostate mimicking gels, respectively. Reasonable simulation errors of 16.42% and 12.62% in needle deflections and small root mean squared errors of 1.42 and 1.47 mm in deflection tracking were obtained. ConclusionsThe proposed needle produced desirable large tip deflections capable of bypassing obstacles in the insertion path and tracked a preplanned trajectory with minor errors. The finite element study would help optimise needle designs and predict deflections in soft tissues. 
    more » « less
  2. The mechanical behavior of soft collagenous tissues is largely influenced by the reinforcing collagen fiber microstructure. The anisotropic collagen microstructure can remodel in response to changes in mechanical loading, which can dramatically alter the mechanical properties of the tissues and the mechanical environment of the resident cells. It is important to study the remodeling mechanisms of collagen tissues to understand the pathophysiology of various connective tissue diseases. We hypothesize that the collagen structure actively changes in response to mechanical stimuli through concurrent processes of collagen deposition and degradation and that the rates of these processes are altered by collagen mechanochemistry, mechanosensitive collagen production, and cellular contraction. In prior studies, we developed micromechanical models of collagen tissues to investigate the role of collagen mechanochemistry and mechanosensitive collagen production in remodeling the collagen fiber structure and tissue growth.[1,2] We found that stress inhibition of enzymatic degradation and stimulation of collagen production can explain many phenomena, including remodeling the anisotropic collagen structure along the directions of the maximum principal stress and the development of stress homeostasis. The goal of this study is to investigate the effect of mechanical loading on the active behavior of the cells. Our approach uses a model 3D microtissue systems, self-assembled on a magnetically actuated two-pillar system (µTUG), to investigate these cell-collagen interactions and effects of mechanical loading. The micropillar support allows for measurement of the active cellular contraction, while the magnetic tweezer allows for mechanical testing of the microtissue under a controlled stress rate. Digital image analysis is applied to measure the local two-dimensional (2D) strain field. To analyze the mechanical measurements for mechanical properties of the collagen structure and active behavior of the cells, we developed a micromechanical model for the mechanical behavior of the microtissue. The micromechanical model includes the elastic behavior of the anisotropic collagen structure and the anisotropic active behavior of the cells. To describe mechanosensitive cellular contraction, we assume concurrent polymerization/depolymerization of actin filaments, where the polymerization rate increases with the fiber stress. In this paper, we will briefly summarize the model and describe an initial model validation by comparing to µTUG experiments measuring the stress-strain behavior of the microtissue to load-unload tests. 
    more » « less
  3. Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures. 
    more » « less
  4. Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1–10 mm) stress-strain response and the deformation of the mesoscale (10–1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. 
    more » « less
  5. Marsden, Alison L. (Ed.)
    Injuries to the skin heal through coordinated action of fibroblast-mediated extracellular matrix (ECM) deposition, ECM remodeling, and wound contraction. Defects involving the dermis result in fibrotic scars featuring increased stiffness and altered collagen content and organization. Although computational models are crucial to unravel the underlying biochemical and biophysical mechanisms, simulations of the evolving wound biomechanics are seldom benchmarked against measurements. Here, we leverage recent quantifications of local tissue stiffness in murine wounds to refine a previously-proposed systems-mechanobiological finite-element model. Fibroblasts are considered as the main cell type involved in ECM remodeling and wound contraction. Tissue rebuilding is coordinated by the release and diffusion of a cytokine wave,e.g.TGF-β, itself developed in response to an earlier inflammatory signal triggered by platelet aggregation. We calibrate a model of the evolving wound biomechanics through a custom-developed hierarchical Bayesian inverse analysis procedure. Further calibration is based on published biochemical and morphological murine wound healing data over a 21-day healing period. The calibrated model recapitulates the temporal evolution of: inflammatory signal, fibroblast infiltration, collagen buildup, and wound contraction. Moreover, it enablesin silicohypothesis testing, which we explore by: (i) quantifying the alteration of wound contraction profiles corresponding to the measured variability in local wound stiffness; (ii) proposing alternative constitutive links connecting the dynamics of the biochemical fields to the evolving mechanical properties; (iii) discussing the plausibility of a stretch-vs.stiffness-mediated mechanobiological coupling. Ultimately, our model challenges the current understanding of wound biomechanics and mechanobiology, beside offering a versatile tool to explore and eventually control scar fibrosis after injury. 
    more » « less