skip to main content


Title: Infection of Diplostomum spp. in invasive round gobies in the St Lawrence River, Canada
Abstract The round goby ( Neogobius melanostomus ) is a successful invader of the Great Lakes–St Lawrence River basin that harbours a number of local parasites. The most common are metacercariae of the genus Diplostomum . Species of Diplostomum are morphologically difficult to distinguish but can be separated using molecular techniques. While a few species have been sequenced from invasive round gobies in this study system, their relative abundance has not been documented. The purpose of this study was to determine the species composition of Diplostomum spp. and their relative abundance in round gobies in the St Lawrence River by sequencing the barcode region of cytochrome c oxidase I. In 2007–2011, Diplostomum huronense (= Diplostomum sp. 1) was the most common, followed in order by Diplostomum indistinctum (= Diplostomum sp. 4) and Diplostomum indistinctum sensu Galazzo, Dayanandan, Marcogliese & McLaughlin (2002). In 2012, the most common species infecting the round goby in the St Lawrence River was D. huronense , followed by D. indistinctum and Diplostomum gavium (= Diplostomum sp. 3). The invasion of the round goby in the St Lawrence River was followed by a decline of Diplostomum spp. in native fishes to low levels, leading to the previously published hypothesis that the presence of the round goby has led to a dilution effect. Herein, it is suggested that despite the low infection levels in the round goby, infections still may lead to spillback, helping to maintain Diplostomum spp. in native fishes, albeit at low levels.  more » « less
Award ID(s):
1845021
NSF-PAR ID:
10320087
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Helminthology
Volume:
95
ISSN:
0022-149X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Obovaria olivariais a species of freshwater mussel native to the Mississippi River and Laurentian Great Lakes‐St. Lawrence River drainages of North America. This mussel has experienced population declines across large parts of its distribution and is imperiled in many jurisdictions.Obovaria olivariauses the similarly imperiledAcipenser fulvescens(Lake Sturgeon) as a host for its glochidia. We employed mitochondrial DNA sequencing and restriction site‐associated DNA sequencing (RAD‐seq) to assess patterns of genetic diversity and population structure ofOolivariafrom 19 collection locations including the St. Lawrence River drainage, the Great Lakes drainage, the Upper Mississippi River drainage, the Ohioan River drainage, and the Mississippi Embayment. Heterozygosity was highest in Upper Mississippi and Great Lakes populations, followed by a reduction in diversity and relative effective population size in the St. Lawrence populations. PairwiseFSTranged from 0.00 to 0.20, and analyses of genetic structure revealed two major ancestral populations, one including all St. Lawrence River/Ottawa River sites and the other including remaining sites; however, significant admixture and isolation by river distance across the range were evident. The genetic diversity and structure ofOolivariais consistent with the existing literature onAcipenser fulvescensand suggests that, although northern and southernOolivariapopulations are genetically distinct, genetic structure inOolivariais largely clinal rather than discrete across its range. Conservation and restoration efforts ofOolivariashould prioritize the maintenance and restoration of locations whereOolivariaremain, especially in northern rivers, and to ensure connectivity that will facilitate dispersal ofAcipenser fulvescensand movement of encysted glochidia.

     
    more » « less
  2. Abstract

    Oligotrophic tropical coral reefs are built on efficient internal energy and nutrient cycling, facilitated by tight trophic interactions. In the competition for available prey, some small fishes have evolved to feed on apparently barren sand patches that connect hard‐substratum patches in many reef habitats.

    One strategy for obtaining prey from a particulate matrix is to sift out small prey items from the sediment (often called ‘winnowing’). Yet, the trophic link between small winnowing consumers and their prey are poorly resolved, let alone the morphological specialisations that enable this foraging behaviour.

    We used aquarium‐based feeding experiments to quantify the impact of winnowing by two sand‐dwelling goby species (Valenciennea sexguttataandValenciennea strigata) on meiobenthos abundance and diversity and examined their actual ingestion of meiobenthos using gut content analysis. To identify potential morphological structures involved in winnowing, we investigated the gobies' feeding apparatus with electron microscopy (SEM) and micro‐computed tomography (micro‐CT).

    After 4 days of sifting through the sand matrix, the two species significantly reduced meiobenthic prey abundance by 30.7% ± 9.2SE(V. sexguttata) and 46.1% ± 5.1SE(V. strigata), but had little impact on the meiobenthic diversity. The most abundant prey groups (copepods and annelids) experienced the greatest reduction in number, suggesting selection by size, shape and density of prey items. Furthermore, gut content analysis confirmed that winnowing gobies can efficiently separate meiobenthic prey from heavier inorganic particles (sand), likely facilitated by a specialised epibranchial lobe, pharyngeal jaws and highly abundant papillose taste buds in the oropharyngeal cavity.

    Our results provide important background on the trophic link between the meiobenthos and winnowing gobies on coral reefs. The revealed specialisations of the goby feeding apparatus facilitate sand‐sifting foraging behaviour and access to an otherwise inaccessible trophic niche of microscopic prey. By having evolved a specialised strategy to obtain nutritious and highly abundant prey from seemingly barren sand, we suggest that winnowing gobies act as an important conduit for sand‐derived energy to higher trophic levels.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract Indigenous freshwater mussels (Unionidae) are integral to riverine ecosystems, playing a pivotal role in aquatic food webs and providing ecological services. With populations on the decline worldwide, freshwater mussels are of conservation concern. In this study, we explore the propensity of the invasive Round Goby (Neogobius melanostomus) fish to prey upon indigenous freshwater mussels. First, we conducted lab experiments where Round Gobies were given the opportunity to feed on juvenile unionid mussels and macroinvertebrates, revealing rates and preferences of consumption. Several Round Gobies consumed whole freshwater mussels during these experiments, as confirmed by mussel counts and x-ray images of the fishes. Next, we investigated Round Gobies collected from stream habitats of the French Creek watershed, which is renowned for its unique and rich aquatic biodiversity. We developed a novel DNA metabarcoding method to identify the specific species of mussels consumed by Round Goby and provide a new database of DNA gene sequences for 25 indigenous unionid mussel species. Several of the fishes sampled had consumed indigenous mussels, including the Elktoe (non-endangered), Creeper (non-endangered), Long Solid (state endangered), and Rayed Bean (federally endangered) species. The invasive Round Goby poses a growing threat to unionid mussels, including species of conservation concern. The introduction of the invasive Round Goby to freshwaters of North America is shaping ecosystem transitions within the aquatic critical zone having widespread implications for conservation and management. 
    more » « less
  4. Abstract

    Cleaning symbioses on coral reefs are mutually beneficial interactions between two individuals, in which a ‘cleaner’ removes and eats parasites from the surface of a ‘client’ fish. A suite of behavioural and morphological traits of cleaners signal cooperation with co‐evolved species, thus protecting the cleaner from being eaten by otherwise predatory clients. However, it is unclear whether cooperation between cleaners and predatory clients is innate or learned, and therefore whether an introduced predator might consume, cooperate with or alter the behaviour of cleaners.

    We explored the role of learning in cleaning symbioses by comparing the interactions of native cleaner fishes with both naïve and experienced, non‐native and native fish predators. In so doing, we tested the vulnerability of the predominant cleaners on Atlantic coral reefs, cleaning gobies (Elacatinusspp.), to the recent introduction of a generalist predator, the Indo‐Pacific red lionfish (Pterois volitans).

    Naïve juveniles of both invasive (P. volitans) and native predators (Cephalopholisspp. groupers) initially attacked cleaning gobies and hyperventilated from a putative toxin on the gobies' skin during laboratory experiments. After one to five such encounters, invasive lionfish often approached the cleaner closely, then turned away without striking. Consistent with learned avoidance, invasive lionfish rarely interacted with cleaning gobies in the wild, either antagonistically or cooperatively, and did not affect gobies' abundance. Native predators showed little evidence of learning during early encounters; they repeatedly attacked the cleaner during laboratory experiments and hyperventilated less violently than did lionfish. However, consistent with learned cooperation, native predators rarely antagonised and were frequently cleaned by gobies in the wild.

    We demonstrated that rapid, learned avoidance protects a distasteful cleaning mutualist from an invasive predator. The behavioural plasticity of this invader likely contributes to its success across its invaded range. Additionally, our results suggest that the cleaner's chemical defence most likely evolved as a way to deter predation and reinforce cooperation with naïve individuals of native species.

     
    more » « less
  5. Abstract

    Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.

    Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.

    Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.

    In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.

    The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches.

     
    more » « less