Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency.
more »
« less
Program Synthesis Guided Reinforcement Learning for Partially Observed Environments
A key challenge for reinforcement learning is solving long-horizon planning problems. Recent work has leveraged programs to guide reinforcement learning in these settings. However, these approaches impose a high manual burden on the user since they must provide a guiding program for every new task. Partially observed environments further complicate the programming task because the program must implement a strategy that correctly, and ideally optimally, handles every possible configuration of the hidden regions of the environment. We propose a new approach, model predictive program synthesis (MPPS), that uses program synthesis to automatically generate the guiding programs. It trains a generative model to predict the unobserved portions of the world, and then synthesizes a program based on samples from this model in a way that is robust to its uncertainty. In our experiments, we show that our approach significantly outperforms non-program-guided approaches on a set of challenging benchmarks, including a 2D Minecraft-inspired environment where the agent must complete a complex sequence of subtasks to achieve its goal, and achieves a similar performance as using handcrafted programs to guide the agent. Our results demonstrate that our approach can obtain the benefits of program-guided reinforcement learning without requiring the user to provide a new guiding program for every new task.
more »
« less
- Award ID(s):
- 1918839
- PAR ID:
- 10320151
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integrating Symbolic Planning and Reinforcement Learning for Following Temporal Logic SpecificationsTeaching a deep reinforcement learning (RL) agent to follow instructions in multi-task environments is a challenging problem. We consider that user defines every task by a linear temporal logic (LTL) formula. However, some causal dependencies in complex environments may be unknown to the user in advance. Hence, when human user is specifying instructions, the robot cannot solve the tasks by simply following the given instructions. In this work, we propose a hierarchical reinforcement learning (HRL) framework in which a symbolic transition model is learned to efficiently produce high-level plans that can guide the agent efficiently solve different tasks. Specifically, the symbolic transition model is learned by inductive logic programming (ILP) to capture logic rules of state transitions. By planning over the product of the symbolic transition model and the automaton derived from the LTL formula, the agent can resolve causal dependencies and break a causally complex problem down into a sequence of simpler low-level sub-tasks. We evaluate the proposed framework on three environments in both discrete and continuous domains, showing advantages over previous representative methods.more » « less
-
Applying reinforcement learning (RL) to sparse reward domains is notoriously challenging due to insufficient guiding signals. Common RL techniques for addressing such domains include (1) learning from demonstrations and (2) curriculum learning. While these two approaches have been studied in detail, they have rarely been considered together. This paper aims to do so by introducing a principled task-phasing approach that uses demonstrations to automatically generate a curriculum sequence. Using inverse RL from (suboptimal) demonstrations we define a simple initial task. Our task phasing approach then provides a framework to gradually increase the complexity of the task all the way to the target task, while retuning the RL agent in each phasing iteration. Two approaches for phasing are considered: (1) gradually increasing the proportion of time steps an RL agent is in control, and (2) phasing out a guiding informative reward function. We present conditions that guarantee the convergence of these approaches to an optimal policy. Experimental results on 3 sparse reward domains demonstrate that our task-phasing approaches outperform state-of-the-art approaches with respect to asymptotic performance.more » « less
-
Deep reinforcement learning (RL) has led to encouraging successes in numerous challenging robotics applications. However, the lack of inductive biases to support logic deduction and generalization in the representation of a deep RL model causes it less effective in exploring complex long-horizon robot-control tasks with sparse reward signals. Existing program synthesis algorithms for RL problems inherit the same limitation, as they either adapt conventional RL algorithms to guide program search or synthesize robot-control programs to imitate an RL model. We propose ReGuS, a reward-guided synthesis paradigm, to unlock the potential of program synthesis to overcome the exploration challenges. We develop a novel hierarchical synthesis algorithm with decomposed search space for loops, on-demand synthesis of conditional statements, and curriculum synthesis for procedure calls, to effectively compress the exploration space for long-horizon, multi-stage, and procedural robot-control tasks that are difficult to address by conventional RL techniques. Experiment results demonstrate that ReGuS significantly outperforms state-of-the-art RL algorithms and standard program synthesis baselines on challenging robot tasks including autonomous driving, locomotion control, and object manipulation. CCS Concepts: •Software and its engineering → Automatic programming.more » « less
-
Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma’s Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60 % more often on average, compared to learning without language.more » « less
An official website of the United States government

