We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/poly(d) accuracy using at most $$d^{1.25-\delta}$$ bits of memory must make at least $$\tilde{Omega}(d^{1+(4/3)\delta})$$ first-order queries (for any constant $$\delta in [0,1/4]$$). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal $$\tilde{O}(d)$$ query bound for this problem obtained by cutting plane methods that use $$\tilde{O}(d^2)$$ memory. This resolves a COLT 2019 open problem of Woodworth and Srebro.
more »
« less
Random multilinear maps and the Erd\H{o}s box problem
By using random multilinear maps, we provide new lower bounds for the Erd\H{o}s box problem, the problem of estimating the extremal number of the complete $$d$$-partite $$d$$-uniform hypergraph with two vertices in each part, thereby improving on work of Gunderson, R\"{o}dl and Sidorenko.
more »
« less
- Award ID(s):
- 2054452
- PAR ID:
- 10320211
- Date Published:
- Journal Name:
- Discrete analysis
- Volume:
- 2021
- ISSN:
- 2397-3129
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by fairness concerns, we study existence and computation of portfolios, defined as: given anoptimization problem with feasible solutions D, a class C of fairness objective functions, a set X of feasible solutions is an α-approximate portfolio if for each objective f in C, there is an α-approximation for f in X. We study the trade-off between the size |X| of the portfolio and its approximation factor αfor various combinatorial problems, such as scheduling, covering, and facility location, and choices of C as top-k, ordered and symmetric monotonic norms. Our results include: (i) an α-approximate portfolio of size O(log d*log(α/4))for ordered norms and lower bounds of size \Omega( log dlog α+log log d)for the problem of scheduling identical jobs on d unidentical machines, (ii) O(log n)-approximate O(log n)-sized portfolios for facility location on n points for symmetric monotonic norms, and (iii) logO(d)^(r^2)-size O(1)-approximate portfolios for ordered norms and O(log d)-approximate for symmetric monotonic norms for covering polyhedra with a constant rnumber of constraints. The latter result uses our novel OrderAndCount framework that obtains an exponentialimprovement in portfolio sizes compared to current state-of-the-art, which may be of independent interest.more » « less
-
Monotonicity testing of Boolean functions on the hypergrid, $$f:[n]^d \to \{0,1\}$$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $$n$$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $$\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$$. This complexity is independent of $$n$$, but has a suboptimal dependence on $$d$$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $$\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$$ and $$\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$$-query testers, respectively. These testers have an almost optimal dependence on $$d$$, but a suboptimal polynomial dependence on $$n$$. \smallskip In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $$O(\varepsilon^{-2} d^{1/2 + o(1)})$$, \emph{independent} of $$n$$. Up to the $$d^{o(1)}$$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $$n$$ yields a non-adaptive, one-sided $$O(\varepsilon^{-2} d^{1/2 + o(1)})$$-query monotonicity tester for Boolean functions $$f:\mathbb{R}^d \to \{0,1\}$$ associated with an arbitrary product measure.more » « less
-
A decision tree recursively splits a feature space Rd and then assigns class labels based on the resulting partition. Decision trees have been part of the basic machine- learning toolkit for decades. A large body of work treats heuristic algorithms to compute a decision tree from training data, usually aiming to minimize in particular the size of the resulting tree. In contrast, little is known about the complexity of the underlying computational problem of computing a minimum-size tree for the given training data. We study this problem with respect to the number d of dimensions of the feature space. We show that it can be solved in O(n2d+1d) time, but under reasonable complexity-theoretic assumptions it is not possible to achieve f (d) · no(d/ log d) running time, where n is the number of training examples. The problem is solvable in (dR)O(dR) · n1+o(1) time, if there are exactly two classes and R is an upper bound on the number of tree leaves labeled with the first class.more » « less
-
Estimating the normalizing constant of an unnormalized probability distribution has important applications in computer science, statistical physics, machine learning, and statistics. In this work, we consider the problem of estimating the normalizing constant to within a multiplication factor of 1 ± ε for a μ-strongly convex and L-smooth function f, given query access to f(x) and ∇f(x). We give both algorithms and lowerbounds for this problem. Using an annealing algorithm combined with a multilevel Monte Carlo method based on underdamped Langevin dynamics, we show that O(d^{4/3}/\eps^2) queries to ∇f are sufficient. Moreover, we provide an information theoretic lowerbound, showing that at least d^{1-o(1)}/\eps^{2-o(1)} queries are necessary. This provides a first nontrivial lowerbound for the problem.more » « less
An official website of the United States government

