skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus
ABSTRACT Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus , when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene ( manA ) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation. IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene ( manA ) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.  more » « less
Award ID(s):
1553004
PAR ID:
10320253
Author(s) / Creator(s):
; ;
Editor(s):
Brun, Yves V.
Date Published:
Journal Name:
Journal of Bacteriology
Volume:
202
Issue:
4
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shuman, Howard A. (Ed.)
    ABSTRACT Caulobacter crescentus adapts to phosphate starvation by elongating its cell body and a polar stalk structure. The stalk is an extension of the Gram-negative envelope containing inner and outer membranes as well as a peptidoglycan cell wall. Cellular elongation requires a 6- to 7-fold increase in membrane synthesis, yet phosphate limitation would preclude the incorporation of additional phospholipids. In the place of phospholipids, C. crescentus can synthesize several glycolipid species, including a novel glycosphingolipid (GSL-2). While glycosphingolipids are ubiquitous in eukaryotes, the presence of GSL-2 in C. crescentus is surprising since GSLs had previously been found only in Sphingomonas species, in which they play a role in outer membrane integrity. In this paper, we identify three proteins required for GSL-2 synthesis: CcbF catalyzes the first step in ceramide synthesis, while Sgt1 and Sgt2 sequentially glycosylate ceramides to produce GSL-2. Unlike in Sphingomonas , GSLs are nonessential in C. crescentus ; however, the presence of ceramides does contribute to phage resistance and susceptibility to the cationic antimicrobial peptide polymyxin B. The identification of a novel lipid species specifically produced upon phosphate starvation suggests that bacteria may be able to synthesize a wider variety of lipids in response to stresses than previously observed. Uncovering these lipids and their functional relevance will provide greater insight into microbial physiology and environmental adaptation. IMPORTANCE Bacteria adapt to environmental changes in a variety of ways, including altering their cell shape. Caulobacter crescentus adapts to phosphate starvation by elongating its cell body and a polar stalk structure containing both inner and outer membranes. While we generally think of cellular membranes being composed largely of phospholipids, cellular elongation occurs when environmental phosphate, and therefore phospholipid synthesis, is limited. In order to adapt to these environmental constraints, C. crescentus synthesizes several glycolipid species, including a novel glycosphingolipid. This finding is significant because glycosphingolipids, while ubiquitous in eukaryotes, are extremely rare in bacteria. In this paper, we identify three proteins required for GSL-2 synthesis and demonstrate that they contribute to phage resistance. These findings suggest that bacteria may synthesize a wider variety of lipids in response to stresses than previously observed. 
    more » « less
  2. Summary The diversity of cell shapes across the bacterial kingdom reflects evolutionary pressures that have produced physiologically important morphologies. While efforts have been made to understand the regulation of some prototypical cell morphologies such as that of rod‐shapedEscherichia coli, little is known about most cell shapes. ForCaulobacter crescentus, polar stalk synthesis is tied to its dimorphic life cycle, and stalk elongation is regulated by phosphate availability. Based on the previous observation thatC. crescentusstalks are lysozyme‐resistant, we compared the composition of the peptidoglycan cell wall of stalks and cell bodies and identified key differences in peptidoglycan crosslinking. Cell body peptidoglycan contained primarily DD‐crosslinks betweenmeso‐diaminopimelic acid and D‐alanine residues, whereas stalk peptidoglycan had more LD‐transpeptidation (meso‐diaminopimelic acid‐meso‐diaminopimelic acid), mediated by LdtD. We determined thatldtDis dispensable for stalk elongation; rather, stalk LD‐transpeptidation reflects an aging process associated with low peptidoglycan turnover in the stalk. We also found that lysozyme resistance is a structural consequence of LD‐crosslinking. Despite no obvious selection pressure for LD‐crosslinking or lysozyme resistance inC. crescentus, the correlation between these two properties was maintained in other organisms, suggesting that DAP‐DAP crosslinking may be a general mechanism for regulating bacterial sensitivity to lysozyme. 
    more » « less
  3. The crescent-shaped bacterium Caulobacter crescentus divides asymmetrically into a sessile (stalked) cell and a motile (flagellated) cell. This dimorphic cell division cycle is driven by the asymmetric appearance of scaffolding proteins at the cell’s stalk and flagellum poles. The scaffolding proteins recruit enzyme complexes that phosphorylate and degrade a master transcription factor, CtrA, and the abundance and phosphorylation state of CtrA control the onset of DNA synthesis and the differentiation of stalked and flagellated cell types. In this study, we use a Turing-pattern mechanism to simulate the spatiotemporal dynamics of scaffolding proteins in Caulobacter and how they influence the abundance and intracellular distribution of CtrA-P. Our mathematical model captures crucial features of wild-type and mutant strains and predicts the distributions of CtrA-P and signaling proteins in mutant strains. Our model accounts for Caulobacter polar morphogenesis and shows how spatial localization and phosphosignaling cooperate to establish asymmetry during the cell cycle. 
    more » « less
  4. Csikász-Nagy, Attila (Ed.)
    The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus . Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms. 
    more » « less
  5. ABSTRACT In aquatic environments, Caulobacter spp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features of Caulobacter crescentus colonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface, C. crescentus initially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trap C. crescentus cells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required for C. crescentus to partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment. IMPORTANCE In aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enables Caulobacter crescentus to partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved in Caulobacter spp. and other members of the diverse class Alphaproteobacteria , these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems. 
    more » « less