This study examines the interactions between healthy target cells, infected target cells, virus particles, and immune cells within an HIV model. The model exhibits two equilibrium points: an infection-free equilibrium and an infection equilibrium. Stability analysis shows that the infection-free equilibrium is locally asymptotically stable when R0<1. Further, it is unstable when R0>1. The infection equilibrium is locally asymptotically stable when R0>1. The structural and practical identifiabilities of the within-host model for HIV infection dynamics were investigated using differential algebra techniques and Monte Carlo simulations. The HIV model was structurally identifiable by observing the total uninfected and infected target cells, immune cells, and viral load. Monte Carlo simulations assessed the practical identifiability of parameters. The production rate of target cells (λ), the death rate of healthy target cells (d), the death rate of infected target cells (δ), and the viral production rate by infected cells (π) were practically identifiable. The rate of infection of target cells by the virus (β), the death rate of infected cells by immune cells (Ψ), and antigen-driven proliferation rate of immune cells (b) were not practically identifiable. Practical identifiability was constrained by the noise and sparsity of the data. Analysis shows that increasing the frequency of data collection can significantly improve the identifiability of all parameters. This highlights the importance of optimal data sampling in HIV clinical studies, as it determines the best time points, frequency, and the number of sample points required to accurately capture the dynamics of the HIV infection within a host.
- Award ID(s):
- 2028738
- PAR ID:
- 10320296
- Date Published:
- Journal Name:
- 2020 59th IEEE Conference on Decision and Control (CDC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The contours of endemic coronaviral disease in humans and other animals are shaped by the tendency of coronaviruses to generate new variants superimposed upon nonsterilizing immunity. Consequently, patterns of coronaviral reinfection in animals can inform the emerging endemic state of the SARS-CoV-2 pandemic. We generated controlled reinfection data after high and low risk natural exposure or heterologous vaccination to sialodacryoadenitis virus (SDAV) in rats. Using deterministic compartmental models, we utilized in vivo estimates from these experiments to model the combined effects of variable transmission rates, variable duration of immunity, successive waves of variants, and vaccination on patterns of viral transmission. Using rat experiment-derived estimates, an endemic state achieved by natural infection alone occurred after a median of 724 days with approximately 41.3% of the population susceptible to reinfection. After accounting for translationally altered parameters between rat-derived data and human SARS-CoV-2 transmission, and after introducing vaccination, we arrived at a median time to endemic stability of 1437 (IQR = 749.25) days with a median 15.4% of the population remaining susceptible. We extended the models to introduce successive variants with increasing transmissibility and included the effect of varying duration of immunity. As seen with endemic coronaviral infections in other animals, transmission states are altered by introduction of new variants, even with vaccination. However, vaccination combined with natural immunity maintains a lower prevalence of infection than natural infection alone and provides greater resilience against the effects of transmissible variants.
-
null (Ed.)The pre-clinical development of antiviral agents involves experimental trials in animals and ferrets as an animal model for the study of SARS-CoV-2. Here, we used mathematical models and experimental data to characterize the within-host infection dynamics of SARS-CoV-2 in ferrets. We also performed a global sensitivity analysis of model parameters impacting the characteristics of the viral infection. We provide estimates of the viral dynamic parameters in ferrets, such as the infection rate, the virus production rate, the infectious virus proportion, the infected cell death rate, the virus clearance rate, as well as other related characteristics, including the basic reproduction number, pre-peak infectious viral growth rate, post-peak infectious viral decay rate, pre-peak infectious viral doubling time, post-peak infectious virus half-life, and the target cell loss in the respiratory tract. These parameters and indices are not significantly different between animals infected with viral strains isolated from the environment and isolated from human hosts, indicating a potential for transmission from fomites. While the infection period in ferrets is relatively short, the similarity observed between our results and previous results in humans supports that ferrets can be an appropriate animal model for SARS-CoV-2 dynamics-related studies, and our estimates provide helpful information for such studies.more » « less
-
Abstract Infection risk is assumed to increase with social group size, and thus be a cost of group living. We assess infection risk and costs with respect to group size using data from an epidemic of sarcoptic mange (
Sarcoptes scabiei ) among grey wolves (Canis lupus ). We demonstrate that group size does not predict infection risk and that individual costs of infection, in terms of reduced survival, can be entirely offset by having sufficient numbers of pack‐mates. Infected individuals experience increased mortality hazards with increasing proportions of infected pack‐mates, but healthy individuals remain unaffected. The social support of group hunting and territory defence are two possible mechanisms mediating infection costs. This is likely a common phenomenon among other social species and chronic infections, but difficult to detect in systems where infection status cannot be measured continuously over time. -
This work aims mainly to study the controllability of pertussis infection in the presence of waning and natural booster of pertussis immunity and to study their impact on the overall dynamics and disease outcomes. Therefore, an SIVRWS (Susceptible-Infected-Vaccinated-Recovered-Waned-Susceptible) model for pertussis infection spread in a demographically stationary, homogeneous, and fully symmetric mixing population is introduced. The model has been mathematically analyzed, where both equilibrium and stability analyses have been established, and uniform persistence of the model has been shown. The conditions on model parameters that ensure effective control of the infection have been derived. The effects of the interplay between waning and boosting pertussis immunity by re-exposure to Bordetella pertussis and vaccination on the dynamics have been investigated. The analytical results have been numerically confirmed and explained. The analysis reveals that ignoring the natural booster of immunity overestimates the endemic prevalence of the infection. Moreover, ignoring the differential susceptibility between secondary and primary susceptible individuals overestimates the critical vaccination coverage required to eliminate the infection. Moreover, the shorter the period of immunity acquired by either vaccination or experiencing natural infection, the higher the reproduction number and the endemic prevalence of infection, and therefore, the higher the effort needed to eliminate the infection.more » « less