skip to main content


Title: A Late Holocene Stable Isotope and Carbon Accumulation Record from Teringi Bog in Southern Estonia
Radiocarbon-dated peat cores collected from an ombrotrophic bog in southern Estonia record shifting environmental conditions and carbon accumulation rates in northern Europe during the late Holocene. Modern observations indicate that the water balance of the peatland is highly influenced by changes in relative humidity, followed by temperature and precipitation. The modern δ18O and δ2H values of surface water suggest that the groundwater is an integration of several months of precipitation. There also appears to be little or no direct influence of surface evaporation on the water within the bog, suggesting that water loss is preferentially through transpiration and sub-surface flow. Bulk peat δ13C values exhibit a trend of higher values through the late Holocene, suggesting a pattern of overall increased surface wetness. The δ15N values were low from ~4130 to 3645 cal yr BP, suggesting drier conditions, followed by intermediate values until ~2995 cal yr BP. The δ15N values decrease again from ~2995 to 2470 cal yr BP, suggesting a return to drier conditions, followed by intermediate values until ~955 cal yr BP. The δ15N values were high, suggesting wetter conditions from ~955 to 250 cal yr BP, followed by intermediate values through the modern. Carbon accumulation rates were low to intermediate from ~4200 to 2470 cal yr BP, followed by intermediate-to-high values until ~1645 cal yr BP. Carbon accumulation rates were then low until ~585 cal yr BP, followed by intermediate values through the modern. The geochemical data, combined with observed changes in peat composition and regional proxies of temperature and water table fluctuations through the late Holocene, suggest that carbon accumulation rates were relatively low under dry and warm conditions, whereas accumulation was generally higher (up to ~80 g C m−2 yr−1) when the climate was wetter and/or colder. These findings further suggest that future environmental changes affecting the regional water balance and temperature will impact the potential for northern peatlands to capture and store carbon.  more » « less
Award ID(s):
1827135
NSF-PAR ID:
10320310
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Quaternary
Volume:
5
Issue:
1
ISSN:
2571-550X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The wettest portion of the interior of western North America centers on the mountainous region spanning western Montana, Idaho, British Columbia, and Alberta. Inland ranges there capture the remnants of Pacific storms. Steep east–west hydroclimate gradients make the region sensitive to changes in inland-penetrating moisture that may have varied greatly during the Holocene. To investigate potential hydroclimate change, we produced a 7600-yr lake-level reconstruction from Silver Lake, located on the Montana–Idaho border. Ground-penetrating radar profiles and a transect of four shallow-water sediment cores that were dated using radiocarbon dating and tephrachronology revealed substantial changes in moisture through time. An organic-rich mud unit indicating wet and similar to modern conditions prior to 7000 cal yr BP is overlain by an erosional surface signifying drier than modern conditions from 7000–2800 cal yr BP. A subsequent time-transgressive increase in water levels from 2800–2300 cal yr BP is indicated by a layer of late Holocene muds, and is consistent with glacier expansion and increases in the abundance of mesic tree taxa in the region. Millennial-scale trends were likely driven by variations in orbital-scale forcing during the Holocene, but the regional outcomes probably depended upon factors such as the strength of the Aleutian Low, Pacific sea-surface temperature variability, and the frequency of atmospheric rivers over western North America. 
    more » « less
  2. Sinkholes develop on carbonate landscapes when caves collapse and can subsequently become lake-like environments if they are flooded by local groundwater. Sediment cores retrieved from sinkholes have yielded high-resolution reconstructions of past environmental change, hydroclimate, and hurricane activity. However, our understanding of the internal sedimentary processes of these systems remains incomplete. Here, we use a multiproxy approach including sedimentology (stratigraphy, coarse-grained particle density, bulk organic matter content), micropaleontology (ostracods), and geochemistry (δ13C and δ2H on n-alkanoic acids) to reconstruct evidence for paleolimnology and regional hydroclimate from a continuous stratigraphic record (Emerald Pond sinkhole) in the northern Bahamas that spans the middle to late Holocene. Basal peat at 8.9 m below modern sea level documents the maximum sea-level position at ~ 8200 cal. yr BP. Subsequent upward vertical migration of the local aquifer caused by regional sea-level rise promoted carbonate-marl deposition from ~ 8300 to 1700 cal. yr BP. A shift in coarse particle deposition and ostracods at 5500 cal. yr BP suggests some environmental change, which may be related to one or multiple internal or external drivers. Sapropel deposition from ~ 1700 to 1300 cal. yr BP indicates a fundamental change in limnology to promote increased organic matter preservation, perhaps related to the regional cooling during the Dark Ages Cold Period. We find δ2H28 values are largely invariant from 7700 to 6150 cal. yr BP suggesting a generally stable hydroclimate (mean − 133‰, 1σ = 5‰). The shift to more depleted values (− 156‰, 1σ = 19‰) at ~ 6000–4800 cal. yr BP may be linked to a weakened (eastern displaced) North Atlantic Subtropical High. Nevertheless, additional local hydroclimate records are needed to better disentangle uncertainties from either internal or external influences on the resultant measurements. 
    more » « less
  3. Abstract. The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide adetailed multi-proxy archive of paleoclimate conditions in East Antarcticaduring the Holocene and late Pleistocene. Interpretation of these recordsrequires an accurate depth–age relationship. Here, we present the SPICEcore (SP19) timescale for the age of the ice of SPICEcore. SP19 is synchronized to theWD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) icecore using stratigraphic matching of 251 volcanic events. These eventsindicate an age of 54 302±519 BP (years before 1950) at thebottom of SPICEcore. Annual layers identified in sodium and magnesium ionsto 11 341 BP were used to interpolate between stratigraphic volcanic tiepoints, yielding an annually resolved chronology through the Holocene.Estimated timescale uncertainty during the Holocene is less than 18 yearsrelative to WD2014, with the exception of the interval between 1800 to 3100BP when uncertainty estimates reach ±25 years due to widely spacedvolcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rateof 7.4 cm yr−1 (water equivalent). The time variability of accumulation rateis consistent with expectations for steady-state ice flow through the modernspatial pattern of accumulation rate. Time variations in nitrateconcentration, nitrate seasonal amplitude and δ15N of N2 in turn are as expected for the accumulation rate variations. The highlyvariable yet well-constrained Holocene accumulation history at the site canhelp improve scientific understanding of deposition-sensitive climateproxies such as δ15N of N2 and photolyzed chemicalcompounds. 
    more » « less
  4. Abstract Changes in climate and fire regime have long been recognized as drivers of the postglacial vegetation history of Yellowstone National Park, but the effects of locally dramatic hydrothermal activity are poorly known. Multi-proxy records from Goose Lake have been used to describe the history of Lower Geyser Basin where modern hydrothermal activity is widespread. From 10,300 cal yr BP to 3800 cal yr BP, thermal waters discharged into the lake, as evidenced by the deposition of arsenic-rich sediment, fluorite mud, and relatively high δ 13 C sediment values. Partially thermal conditions affected the limnobiotic composition, but prevailing climate, fire regime, and rhyolitic substrate maintained Pinus contorta forest in the basin, as found throughout the region. At 3800 cal yr BP, thermal water discharge into Goose Lake ceased, as evidenced by a shift in sediment geochemistry and limnobiota. Pollen and charcoal data indicate concurrent grassland development with limited fuel biomass and less fire activity, despite late Holocene climate conditions that were conducive to expanded forest cover. The shift in hydrothermal activity at Goose Lake and establishment of the treeless geyser basin may have been the result of a tectonic event or change in hydroclimate. This record illustrates the complex interactions of geology and climate that govern the development of an active hydrothermal geo-ecosystem. 
    more » « less
  5. Abstract

    The arid southwestern United States is susceptible to sustained droughts that impact water resources and economic activity for millions of residents. Previous work has not systematically investigated the structure, timing, and possible forcings of Holocene Great Basin sub‐orbital hydroclimate changes, impeding our ability to understand the potential future controls on Southwestern aridity. The objective of this paper is to constrain the potential forcings on Holocene aridity and temperature, via comparison of new high‐resolution speleothem data, an Aridity Index synthesizing hydroclimate records, and linkages of Southwestern paleoclimate to other regions. The high‐resolution data from Leviathan Cave provide a paleoclimate record since 13,400 yr ago: A cool Younger Dryas was followed by two pronounced Middle Holocene aridity intervals between 9,850 and 5,310 yr B2k characterized by low growth rates and high δ18O and δ13C values. Subsequently, stalagmite δ18O values show near‐modern levels for the last four millennia during which time growth rates were high and δ13C values were low in response to wetter conditions. The regional Aridity Index documents that Middle Holocene drying coincided with a warm Arctic and decreased sea ice extent, a warm western tropical Pacific, and a large sea surface temperature gradient across the tropical Pacific, all of which likely responded to northern hemisphere summer insolation forcing. Our data suggest that extreme Middle Holocene aridity is more severe than the short medieval droughts evident in the tree ring record, and such extreme aridity may represent a worst‐case analog for future climate.

     
    more » « less