Due to the surge of cloud-assisted AI services, the problem of designing resilient prediction serving systems that can effectively cope with stragglers and minimize response delays has attracted much interest. The common approach for tackling this problem is replication which assigns the same prediction task to multiple workers. This approach, however, is inefficient and incurs significant resource overheads. Hence, a learning-based approach known as parity model (ParM) has been recently proposed which learns models that can generate ``parities’’ for a group of predictions to reconstruct the predictions of the slow/failed workers. While this learning-based approach is more resource-efficient than replication, it is tailored to the specific model hosted by the cloud and is particularly suitable for a small number of queries (typically less than four) and tolerating very few stragglers (mostly one). Moreover, ParM does not handle Byzantine adversarial workers. We propose a different approach, named Approximate Coded Inference (ApproxIFER), that does not require training any parity models, hence it is agnostic to the model hosted by the cloud and can be readily applied to different data domains and model architectures. Compared with earlier works, ApproxIFER can handle a general number of stragglers and scales significantly better with the numbermore »
Glassoformer: a query-sparse transformer for post-fault power grid voltage prediction
We propose GLassoformer, a novel and efficient transformer architecture leveraging group Lasso regularization to reduce the number of queries of the standard self-attention mechanism. Due to the sparsified queries, GLassoformer is more computationally efficient than the standard transformers. On
the power grid post-fault voltage prediction task, GLassoformer shows remarkably better prediction than many existing benchmark algorithms in terms of accuracy and stability.
- Publication Date:
- NSF-PAR ID:
- 10320331
- Journal Name:
- IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Link prediction is one of the fundamental problems in social network analysis. A common set of techniques for link prediction rely on similarity metrics which use the topology of the observed subnetwork to quantify the likelihood of unobserved links. Recently, similarity metrics for link prediction have been shown to be vulnerable to attacks whereby observations about the network are adversarially modified to hide target links. We propose a novel approach for increasing robustness of similarity-based link prediction by endowing the analyst with a restricted set of reliable queries which accurately measure the existence of queried links. The analyst aims to robustly predict a collection of possible links by optimally allocating the reliable queries. We formalize the analyst problem as a Bayesian Stackelberg game in which they first choose the reliable queries, followed by an adversary who deletes a subset of links among the remaining (unreliable) queries by the analyst. The analyst in our model is uncertain about the particular target link the adversary attempts to hide, whereas the adversary has full information about the analyst and the network. Focusing on similarity metrics using only local information, we show that the problem is NP-Hard for both players, and devise two principledmore »
-
Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard rewardmore »
-
Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard rewardmore »
-
The goal of this paper is to improve the efficiency and applicability of straightline extraction techniques in the random oracle model. Straightline extraction in the random oracle model refers to the existence of an extractor, which given the random oracle queries made by a prover on some theorem, is able to produce a witness for with roughly the same probability that produces a verifying proof. This notion applies to both zero-knowledge protocols and verifiable computation where the goal is compressing a proof. Pass (CRYPTO '03) first showed how to achieve this property for NP using a cut-and-choose technique which incurred a -bit overhead in communication where is a security parameter. Fischlin (CRYPTO '05) presented a more efficient technique based on ``proofs of work'' that sheds this cost, but only applies to a limited class of Sigma Protocols with a ``quasi-unique response'' property, which for example, does not necessarily include the standard OR composition for Sigma protocols. With Schnorr/EdDSA signature aggregation as a motivating application, we develop new techniques to improve the computation cost of straight-line extractable proofs. Our improvements to the state of the art range from 70X--200X for the best compression parameters. This is due to a uniquely suitedmore »