skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photoinduced Charge Separation Prompted Intervalence Charge Transfer in a Bis(thienyl)diketopyrrolopyrrole Bridged Donor‐TCBD Push‐Pull System
Award ID(s):
2000988
PAR ID:
10320497
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
37
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The electronic effects of structural defects introduced through chemical doping are challenging to characterize in organic semiconductors, especially when measured in thin film devices where the performance is sensitive to structural heterogeneity. Here, a simple approach is presented to probe the roles of indirect and direct electronic coupling on charge transport in a series of compositionally varied charge‐transfer single crystals. In this system, carbazole (CBZ) is controllably substituted withN‐methylcarbazole (NMCBZ) in the cocrystal formed between CBZ and 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyano‐2,6‐naphthoquinodimethane (F6TNAP), producing a series of single crystals with compositions that range between 0 – 50% CBZ replacement and preserve the structure type of the parent cocrystal. Gas‐phase electronic structure calculations predict that substitutional replacement of CBZ with NMCBZ introduces two competing effects: (i) strengthening of indirect coupling by increasing the average degree of charge transfer and (ii) weakening of direct exchange by increasing the distance between adjacent charge‐transfer π‐stacks. Charge transport measurements reveal an initial decrease in the mobility upon substitution of CBZ with NMCBZ, rationalized by a combination of hole‐trapping and weakened direct coupling with increasing NMCBZ content. Critically, these results demonstrate the potential for solid solutions to offer insight into charge transport mechanisms and their chemical tunability in molecular electronic materials. 
    more » « less
  2. null (Ed.)
  3. Abstract Attaining long‐lived charge‐transfer (CT) states is of the utmost importance for energy science, photocatalysis, and materials engineering. When charge separation (CS) is slower than consequent charge recombination (CR), formation of a CT state is not apparent, yet the CT process provides parallel pathways for deactivation of electronically excited systems. The nuclear, or Franck‐Condon (FC), contributions to the CT kinetics, as implemented by various formalisms based on the Marcus transition‐state theory, provide an excellent platform for designing systems that produce long‐lived CT states. Such approaches, however, tend to underestimate the complexity of alternative parameters that govern CT kinetics. Here we show a comparative analysis of two systems that have quite similar FC CT characteristics but manifest distinctly different CT kinetics. A decrease in the donor‐acceptor electronic coupling during the charge‐separation step provides an alternative route for slowing down undesired charge recombination. These examples suggest that, while infrequently reported and discussed, cases where CR is faster than CS are not necessarily rare occurrences. 
    more » « less