skip to main content


Title: Does Location of BF 2 -Chelated Dipyrromethene (BODIPY) Ring Functionalization Affect Spectral and Electron Transfer Properties? Studies on α-, β-, and Meso-Functionalized BODIPY-Derived Donor–Acceptor Dyads and Triads
Award ID(s):
2000988
PAR ID:
10320499
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
125
Issue:
43
ISSN:
1932-7447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electron donor–acceptor (DA) hybrids comprised of single‐wall carbon nanotubes (SWCNTs) are promising functional materials for light energy conversion. However, the DA hybrids built on SWCNTs have failed to reveal the much‐sought long‐lived charge separation (CS) due to the close proximity of the DA entities facilitating charge recombination. Here, we address this issue and report an elegant strategy to build multi‐modular DA hybrids capable of producing long‐lived CS states. For this, a nano tweezer featuring V‐shape configured BODIPY was synthesized to host SWCNTs of different diameters via π‐stacking. Supported by spectral, electrochemical, and computational studies, the established energy scheme revealed the possibility of sequential electron transfer. Systematic pump‐probe studies covering wide spatial and temporal scales provided evidence of CS from the initial1BODIPY* ultimately resulting in C60‐BODIPY‐SWCNT⋅+CS states of lifetimes in the 20‐microsecond range.

     
    more » « less
  2. Abstract

    Electron donor–acceptor (DA) hybrids comprised of single‐wall carbon nanotubes (SWCNTs) are promising functional materials for light energy conversion. However, the DA hybrids built on SWCNTs have failed to reveal the much‐sought long‐lived charge separation (CS) due to the close proximity of the DA entities facilitating charge recombination. Here, we address this issue and report an elegant strategy to build multi‐modular DA hybrids capable of producing long‐lived CS states. For this, a nano tweezer featuring V‐shape configured BODIPY was synthesized to host SWCNTs of different diameters via π‐stacking. Supported by spectral, electrochemical, and computational studies, the established energy scheme revealed the possibility of sequential electron transfer. Systematic pump‐probe studies covering wide spatial and temporal scales provided evidence of CS from the initial1BODIPY* ultimately resulting in C60‐BODIPY‐SWCNT⋅+CS states of lifetimes in the 20‐microsecond range.

     
    more » « less
  3. The present review provides both a summary and outlook on the exciting field of BODIPYs in polymer chemistry.

     
    more » « less
  4. Abstract

    A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data.

     
    more » « less