SGD with Momentum (SGDM) is a widely used family of algorithms for largescale optimization of machine learning problems. Yet, when optimizing generic convex functions, no advantage is known for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain, which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate of $\Omega(\frac{\ln T}{\sqrt{T}})$ after $T$ iterations. Based on this fact, we study a class of (both adaptive and nonadaptive) FollowTheRegularizedLeaderbased SGDM algorithms with \emph{increasing momentum} and \emph{shrinking updates}. For these algorithms, we show that the last iterate has optimal convergence $O(\frac{1}{\sqrt{T}})$ for unconstrained convex stochastic optimization problems without projections onto bounded domains nor knowledge of $T$. Further, we show a variety of results for FTRLbased SGDM when used with adaptive stepsizes. Empirical results are shown as well.
On the Last Iterate Convergence of Momentum Methods
SGD with Momentum (SGDM) is a widely used family of algorithms for largescale optimization of machine learning problems. Yet, when optimizing generic convex functions, no advantage is known for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain, which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate of $\Omega(\frac{\ln T}{\sqrt{T}})$ after $T$ iterations. Based on this fact, we study a class of (both adaptive and nonadaptive) FollowTheRegularizedLeaderbased SGDM algorithms with increasing momentum and shrinking updates. For these algorithms, we show that the last iterate has optimal convergence $O(\frac{1}{\sqrt{T}})$ for unconstrained convex stochastic optimization problems without projections onto bounded domains nor knowledge of $T$. Further, we show a variety of results for FTRLbased SGDM when used with adaptive stepsizes. Empirical results are shown as well.
 Publication Date:
 NSFPAR ID:
 10320598
 Journal Name:
 Proceedings of Machine Learning Research
 Volume:
 167
 ISSN:
 26403498
 Sponsoring Org:
 National Science Foundation
More Like this


Minimax optimal convergence rates for numerous classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, the behavior of SGDs final iterate has received much less attention despite the widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least quares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations that SGD is run for) is known in advance, the behavior of SGDs final iterate with any polynomially decaying learning rate scheme is highly suboptimal compared to the statistical minimax rate (by a condition number factor in the strongly convex case and a factor of \sqrt{T} in the nonstrongly convex case). In contrast, this paper shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offer significant improvements over any polynomially decaying step size schedule. In particular, the behavior of the finalmore »

Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works.

In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and nonconvex optimization with subGaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. The method can be applied to the nonconvex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. We also revisit AdaGradNorm (Ward et al., 2019) and show a new analysis to obtain a high probability bound that does not require the bounded gradient assumption made in previous works. The full version of our paper contains results for the standard percoordinate AdaGrad.

Minimax optimal convergence rates for classes of stochastic convex optimization problems are well characterized, where the majority of results utilize iterate averaged stochastic gradient descent (SGD) with polynomially decaying step sizes. In contrast, SGD's final iterate behavior has received much less attention despite their widespread use in practice. Motivated by this observation, this work provides a detailed study of the following question: what rate is achievable using the final iterate of SGD for the streaming least squares regression problem with and without strong convexity? First, this work shows that even if the time horizon T (i.e. the number of iterations SGD is run for) is known in advance, SGD's final iterate behavior with any polynomially decaying learning rate scheme is highly suboptimal compared to the minimax rate (by a condition number factor in the strongly convex case and a factor of T‾‾√ in the nonstrongly convex case). In contrast, this paper shows that Step Decay schedules, which cut the learning rate by a constant factor every constant number of epochs (i.e., the learning rate decays geometrically) offers significant improvements over any polynomially decaying step sizes. In particular, the final iterate behavior with a step decay schedule is off the minimaxmore »