We introduce Doppler time-of-flight (D-ToF) rendering, an extension of ToF rendering for dynamic scenes, with applications in simulating D-ToF cameras. D-ToF cameras use high-frequency modulation of illumination and exposure, and measure the Doppler frequency shift to compute the radial velocity of dynamic objects. The time-varying scene geometry and high-frequency modulation functions used in such cameras make it challenging to accurately and efficiently simulate their measurements with existing ToF rendering algorithms. We overcome these challenges in a twofold manner: To achieve accuracy, we derive path integral expressions for D-ToF measurements under global illumination and form unbiased Monte Carlo estimates of these integrals. To achieve efficiency, we develop a tailored time-path sampling technique that combines antithetic time sampling with correlated path sampling. We show experimentally that our sampling technique achieves up to two orders of magnitude lower variance compared to naive time-path sampling. We provide an open-source simulator that serves as a digital twin for D-ToF imaging systems, allowing imaging researchers, for the first time, to investigate the impact of modulation functions, material properties, and global illumination on D-ToF imaging performance.
- PAR ID:
- 10320717
- Date Published:
- Journal Name:
- Proceedings of the ACM on interactive mobile wearable and ubiquitous technologies
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2474-9567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An accurate understanding of omnidirectional environment lighting is crucial for high-quality virtual object rendering in mobile augmented reality (AR). In particular, to support reflective rendering, existing methods have leveraged deep learning models to estimate or have used physical light probes to capture physical lighting, typically represented in the form of an environment map. However, these methods often fail to provide visually coherent details or require additional setups. For example, the commercial framework ARKit uses a convolutional neural network that can generate realistic environment maps; however the corresponding reflective rendering might not match the physical environments. In this work, we present the design and implementation of a lighting reconstruction framework called LITAR that enables realistic and visually-coherent rendering. LITAR addresses several challenges of supporting lighting information for mobile AR. First, to address the spatial variance problem, LITAR uses two-field lighting reconstruction to divide the lighting reconstruction task into the spatial variance-aware near-field reconstruction and the directional-aware far-field reconstruction. The corresponding environment map allows reflective rendering with correct color tones. Second, LITAR uses two noise-tolerant data capturing policies to ensure data quality, namely guided bootstrapped movement and motion-based automatic capturing. Third, to handle the mismatch between the mobile computation capability and the high computation requirement of lighting reconstruction, LITAR employs two novel real-time environment map rendering techniques called multi-resolution projection and anchor extrapolation. These two techniques effectively remove the need of time-consuming mesh reconstruction while maintaining visual quality. Lastly, LITAR provides several knobs to facilitate mobile AR application developers making quality and performance trade-offs in lighting reconstruction. We evaluated the performance of LITAR using a small-scale testbed experiment and a controlled simulation. Our testbed-based evaluation shows that LITAR achieves more visually coherent rendering effects than ARKit. Our design of multi-resolution projection significantly reduces the time of point cloud projection from about 3 seconds to 14.6 milliseconds. Our simulation shows that LITAR, on average, achieves up to 44.1% higher PSNR value than a recent work Xihe on two complex objects with physically-based materials.more » « less
-
Lighting understanding plays an important role in virtual object composition, including mobile augmented reality (AR) applications. Prior work often targets recovering lighting from the physical environment to support photorealistic AR rendering. Because the common workflow is to use a back-facing camera to capture the physical world for overlaying virtual objects, we refer to this usage pattern as back-facing AR. However, existing methods often fall short in supporting emerging front-facing mobile AR applications, e.g., virtual try-on where a user leverages a front-facing camera to explore the effect of various products (e.g., glasses or hats) of different styles. This lack of support can be attributed to the unique challenges of obtaining 360° HDR environment maps, an ideal format of lighting representation, from the front-facing camera and existing techniques. In this paper, we propose to leverage dual-camera streaming to generate a high-quality environment map by combining multi-view lighting reconstruction and parametric directional lighting estimation. Our preliminary results show improved rendering quality using a dual-camera setup for front-facing AR compared to a commercial solution.more » « less
-
Conventional continuous-wave amplitude-modulated time-of-flight (CWAM ToF) cameras suffer from a fundamental trade-off between light throughput and depth of field (DoF): a larger lens aperture allows more light collection but suffers from significantly lower DoF. However, both high light throughput, which increases signal-to-noise ratio, and a wide DoF, which enlarges the system’s applicable depth range, are valuable for CWAM ToF applications. In this work, we propose EDoF-ToF, an algorithmic method to extend the DoF of large-aperture CWAM ToF cameras by using a neural network to deblur objects outside of the lens’s narrow focal region and thus produce an all-in-focus measurement. A key component of our work is the proposed large-aperture ToF training data simulator, which models the depth-dependent blurs and partial occlusions caused by such apertures. Contrary to conventional image deblurring where the blur model is typically linear, ToF depth maps are nonlinear functions of scene intensities, resulting in a nonlinear blur model that we also derive for our simulator. Unlike extended DoF for conventional photography where depth information needs to be encoded (or made depth-invariant) using additional hardware (phase masks, focal sweeping, etc.), ToF sensor measurements naturally encode depth information, allowing a completely software solution to extended DoF. We experimentally demonstrate EDoF-ToF increasing the DoF of a conventional ToF system by 3.6 ×, effectively achieving the DoF of a smaller lens aperture that allows 22.1 × less light. Ultimately, EDoF-ToF enables CWAM ToF cameras to enjoy the benefits of both high light throughput and a wide DoF.
-
In Augmented Reality (AR), improper virtual content placement can obstruct real-world elements, causing confusion and degrading the experience. To address this, we present LOBSTAR (Language model-based OBSTruction detection for Augmented Reality), the first system leveraging a vision language model (VLM) to detect key objects and prevent obstructions in AR. We evaluated LOBSTAR using both real-world and virtual-scene images and developed a mobile app for AR content obstruction detection. Our results demonstrate that LOBSTAR effectively understands scenes and detects obstructive content with well-designed VLM prompts, achieving up to 96% accuracy and a detection latency of 580ms on a mobile app.more » « less