skip to main content

Title: InDepth: Real-time Depth Inpainting for Mobile Augmented Reality
Mobile Augmented Reality (AR) demands realistic rendering of virtual content that seamlessly blends into the physical environment. For this reason, AR headsets and recent smartphones are increasingly equipped with Time-of-Flight (ToF) cameras to acquire depth maps of a scene in real-time. ToF cameras are cheap and fast, however, they suffer from several issues that affect the quality of depth data, ultimately hampering their use for mobile AR. Among them, scale errors of virtual objects - appearing much bigger or smaller than what they should be - are particularly noticeable and unpleasant. This article specifically addresses these challenges by proposing InDepth, a real-time depth inpainting system based on edge computing. InDepth employs a novel deep neural network (DNN) architecture to improve the accuracy of depth maps obtained from ToF cameras. The DNN fills holes and corrects artifacts in the depth maps with high accuracy and eight times lower inference time than the state of the art. An extensive performance evaluation in real settings shows that InDepth reduces the mean absolute error by a factor of four with respect to ARCore DepthLab. Finally, a user study reveals that InDepth is effective in rendering correctly-scaled virtual objects, outperforming DepthLab.
Authors:
; ; ; ; ;
Award ID(s):
2046072 1908051 1903136
Publication Date:
NSF-PAR ID:
10320717
Journal Name:
Proceedings of the ACM on interactive mobile wearable and ubiquitous technologies
Volume:
6
Issue:
1
ISSN:
2474-9567
Sponsoring Org:
National Science Foundation
More Like this
  1. An accurate understanding of omnidirectional environment lighting is crucial for high-quality virtual object rendering in mobile augmented reality (AR). In particular, to support reflective rendering, existing methods have leveraged deep learning models to estimate or have used physical light probes to capture physical lighting, typically represented in the form of an environment map. However, these methods often fail to provide visually coherent details or require additional setups. For example, the commercial framework ARKit uses a convolutional neural network that can generate realistic environment maps; however the corresponding reflective rendering might not match the physical environments. In this work, we present the design and implementation of a lighting reconstruction framework called LITAR that enables realistic and visually-coherent rendering. LITAR addresses several challenges of supporting lighting information for mobile AR. First, to address the spatial variance problem, LITAR uses two-field lighting reconstruction to divide the lighting reconstruction task into the spatial variance-aware near-field reconstruction and the directional-aware far-field reconstruction. The corresponding environment map allows reflective rendering with correct color tones. Second, LITAR uses two noise-tolerant data capturing policies to ensure data quality, namely guided bootstrapped movement and motion-based automatic capturing. Third, to handle the mismatch between the mobile computation capability and themore »high computation requirement of lighting reconstruction, LITAR employs two novel real-time environment map rendering techniques called multi-resolution projection and anchor extrapolation. These two techniques effectively remove the need of time-consuming mesh reconstruction while maintaining visual quality. Lastly, LITAR provides several knobs to facilitate mobile AR application developers making quality and performance trade-offs in lighting reconstruction. We evaluated the performance of LITAR using a small-scale testbed experiment and a controlled simulation. Our testbed-based evaluation shows that LITAR achieves more visually coherent rendering effects than ARKit. Our design of multi-resolution projection significantly reduces the time of point cloud projection from about 3 seconds to 14.6 milliseconds. Our simulation shows that LITAR, on average, achieves up to 44.1% higher PSNR value than a recent work Xihe on two complex objects with physically-based materials.« less
  2. Lighting understanding plays an important role in virtual object composition, including mobile augmented reality (AR) applications. Prior work often targets recovering lighting from the physical environment to support photorealistic AR rendering. Because the common workflow is to use a back-facing camera to capture the physical world for overlaying virtual objects, we refer to this usage pattern as back-facing AR. However, existing methods often fall short in supporting emerging front-facing mobile AR applications, e.g., virtual try-on where a user leverages a front-facing camera to explore the effect of various products (e.g., glasses or hats) of different styles. This lack of support can be attributed to the unique challenges of obtaining 360° HDR environment maps, an ideal format of lighting representation, from the front-facing camera and existing techniques. In this paper, we propose to leverage dual-camera streaming to generate a high-quality environment map by combining multi-view lighting reconstruction and parametric directional lighting estimation. Our preliminary results show improved rendering quality using a dual-camera setup for front-facing AR compared to a commercial solution.
  3. Eye tracking has become an essential human-machine interaction modality for providing immersive experience in numerous virtual and augmented reality (VR/AR) applications desiring high throughput (e.g., 240 FPS), small-form, and enhanced visual privacy. However, existing eye tracking systems are still limited by their: (1) large form-factor largely due to the adopted bulky lens-based cameras; (2) high communication cost required between the camera and backend processor; and (3) potentially concerned low visual privacy, thus prohibiting their more extensive applications. To this end, we propose, develop, and validate a lensless FlatCambased eye tracking algorithm and accelerator co-design framework dubbed EyeCoD to enable eye tracking systems with a much reduced form-factor and boosted system efficiency without sacrificing the tracking accuracy, paving the way for next-generation eye tracking solutions. On the system level, we advocate the use of lensless FlatCams instead of lens-based cameras to facilitate the small form-factor need in mobile eye tracking systems, which also leaves rooms for a dedicated sensing-processor co-design to reduce the required camera-processor communication latency. On the algorithm level, EyeCoD integrates a predict-then-focus pipeline that first predicts the region-of-interest (ROI) via segmentation and then only focuses on the ROI parts to estimate gaze directions, greatly reducing redundant computations andmore »data movements. On the hardware level, we further develop a dedicated accelerator that (1) integrates a novel workload orchestration between the aforementioned segmentation and gaze estimation models, (2) leverages intra-channel reuse opportunities for depth-wise layers, (3) utilizes input feature-wise partition to save activation memory size, and (4) develops a sequential-write-parallel-read input buffer to alleviate the bandwidth requirement for the activation global buffer. On-silicon measurement and extensive experiments validate that our EyeCoD consistently reduces both the communication and computation costs, leading to an overall system speedup of 10.95×, 3.21×, and 12.85× over general computing platforms including CPUs and GPUs, and a prior-art eye tracking processor called CIS-GEP, respectively, while maintaining the tracking accuracy. Codes are available at https://github.com/RICE-EIC/EyeCoD.« less
  4. Though virtual reality (VR) has been advanced to certain levels of maturity in recent years, the general public, especially the population of the blind and visually impaired (BVI), still cannot enjoy the benefit provided by VR. Current VR accessibility applications have been developed either on expensive head-mounted displays or with extra accessories and mechanisms, which are either not accessible or inconvenient for BVI individuals. In this paper, we present a mobile VR app that enables BVI users to access a virtual environment on an iPhone in order to build their skills of perception and recognition of the virtual environment and the virtual objects in the environment. The app uses the iPhone on a selfie stick to simulate a long cane in VR, and applies Augmented Reality (AR) techniques to track the iPhone’s real-time poses in an empty space of the real world, which is then synchronized to the long cane in the VR environment. Due to the use of mixed reality (the integration of VR & AR), we call it the Mixed Reality cane (MR Cane), which provides BVI users auditory and vibrotactile feedback whenever the virtual cane comes in contact with objects in VR. Thus, the MR Cane allowsmore »BVI individuals to interact with the virtual objects and identify approximate sizes and locations of the objects in the virtual environment. We performed preliminary user studies with blind-folded participants to investigate the effectiveness of the proposed mobile approach and the results indicate that the proposed MR Cane could be effective to help BVI individuals in understanding the interaction with virtual objects and exploring 3D virtual environments. The MR Cane concept can be extended to new applications of navigation, training and entertainment for BVI individuals without more significant efforts.« less
  5. Mobile headsets should be capable of understanding 3D physical environments to offer a truly immersive experience for augmented/mixed reality (AR/MR). However, their small form-factor and limited computation resources make it extremely challenging to execute in real-time 3D vision algorithms, which are known to be more compute-intensive than their 2D counterparts. In this paper, we propose DeepMix, a mobility-aware, lightweight, and hybrid 3D object detection framework for improving the user experience of AR/MR on mobile headsets. Motivated by our analysis and evaluation of state-of-the-art 3D object detection models, DeepMix intelligently combines edge-assisted 2D object detection and novel, on-device 3D bounding box estimations that leverage depth data captured by headsets. This leads to low end-to-end latency and significantly boosts detection accuracy in mobile scenarios. A unique feature of DeepMix is that it fully exploits the mobility of headsets to fine-tune detection results and boost detection accuracy. To the best of our knowledge, DeepMix is the first 3D object detection that achieves 30 FPS (i.e., an end-to-end latency much lower than the 100 ms stringent requirement of interactive AR/MR). We implement a prototype of DeepMix on Microsoft HoloLens and evaluate its performance via both extensive controlled experiments and a user study with 30+more »participants. DeepMix not only improves detection accuracy by 9.1--37.3% but also reduces end-to-end latency by 2.68--9.15×, compared to the baseline that uses existing 3D object detection models.« less