skip to main content


Title: Multiple independent recombinations led to hermaphroditism in grapevine
Hermaphroditic (perfect) flowers were a key trait in grapevine domestication, enabling a drastic increase in yields due to the efficiency of self-pollination in the domesticated grapevine ( Vitis vinifera L. ssp. vinifera ). In contrast, all extant wild Vitis species are dioecious, each plant having only male or female flowers. In this study, we identified the male (M) and female (f) haplotypes of the sex-determining region (SDR) in the wild grapevine species V. cinerea and confirmed the boundaries of the SDR. We also demonstrated that the SDR and its boundaries are precisely conserved across the Vitis genus using shotgun resequencing data of 556 wild and domesticated accessions from North America, East Asia, and Europe. A high linkage disequilibrium was found at the SDR in all wild grape species, while different recombination signatures were observed along the hermaphrodite (H) haplotype of 363 cultivated accessions, revealing two distinct H haplotypes, named H1 and H2. To further examine the H2 haplotype, we sequenced the genome of two grapevine cultivars, 'Riesling' and 'Chardonnay'. By reconstructing the first two H2 haplotypes, we estimated the divergence time between H1 and H2 haplotypes at ∼6 million years ago, which predates the domestication of grapevine (∼8,000 y ago). Our findings emphasize the important role of recombination suppression in maintaining dioecy in wild grape species and lend additional support to the hypothesis that at least two independent recombination events led to the reversion to hermaphroditism in grapevine.  more » « less
Award ID(s):
1741627
NSF-PAR ID:
10320774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
15
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs.

     
    more » « less
  2. SUMMARY

    The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis viniferaL.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP‐Seq) allows for the genome‐wide TF‐binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP‐Seq of MYB14/MYB15 was combined with aggregate gene co‐expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47STSfamily genes. Moreover, all three MYBs bind to severalPAL,C4H, and4CLgenes, in addition to shikimate pathway genes, theWRKY03stilbenoid co‐regulator and resveratrol‐modifying gene candidates among which ROMT2‐3 were validated enzymatically. A high proportion of DAP‐Seq bound genes were induced in the activated transcriptomes of transientMYB15‐overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3‐MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP‐Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome‐wide approaches in the context of non‐model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.

     
    more » « less
  3. Abstract Background Introgressive hybridization can reassort genetic variants into beneficial combinations, permitting adaptation to new ecological niches. To evaluate evolutionary patterns and dynamics that contribute to introgression, we investigate six wild Vitis species that are native to the Southwestern United States and useful for breeding grapevine ( V. vinifera ) rootstocks. Results By creating a reference genome assembly from one wild species, V. arizonica , and by resequencing 130 accessions, we focus on identifying putatively introgressed regions (pIRs) between species. We find six species pairs with signals of introgression between them, comprising up to ~ 8% of the extant genome for some pairs. The pIRs tend to be gene poor, located in regions of high recombination and enriched for genes implicated in disease resistance functions. To assess potential pIR function, we explore SNP associations to bioclimatic variables and to bacterial levels after infection with the causative agent of Pierce’s disease ( Xylella fastidiosa ). pIRs are enriched for SNPs associated with both climate and bacterial levels, suggesting that introgression is driven by adaptation to biotic and abiotic stressors. Conclusions Altogether, this study yields insights into the genomic extent of introgression, potential pressures that shape adaptive introgression, and the evolutionary history of economically important wild relatives of a critical crop. 
    more » « less
  4. Whiteman, N (Ed.)
    Abstract

    The genome sequence of the diploid and highly homozygous Vitis vinifera genotype PN40024 serves as the reference for many grapevine studies. Despite several improvements to the PN40024 genome assembly, its current version PN12X.v2 is quite fragmented and only represents the haploid state of the genome with mixed haplotypes. In fact, being nearly homozygous, this genome contains several heterozygous regions that are yet to be resolved. Taking the opportunity of improvements that long-read sequencing technologies offer to fully discriminate haplotype sequences, an improved version of the reference, called PN40024.v4, was generated. Through incorporating long genomic sequencing reads to the assembly, the continuity of the 12X.v2 scaffolds was highly increased with a total number decreasing from 2,059 to 640 and a reduction in N bases of 88%. Additionally, the full alternative haplotype sequence was built for the first time, the chromosome anchoring was improved and the number of unplaced scaffolds was reduced by half. To obtain a high-quality gene annotation that outperforms previous versions, a liftover approach was complemented with an optimized annotation workflow for Vitis. Integration of the gene reference catalogue and its manual curation have also assisted in improving the annotation, while defining the most reliable estimation of 35,230 genes to date. Finally, we demonstrated that PN40024 resulted from 9 selfings of cv. “Helfensteiner” (cross of cv. “Pinot noir” and “Schiava grossa”) instead of a single “Pinot noir”. These advances will help maintain the PN40024 genome as a gold-standard reference, also contributing toward the eventual elaboration of the grapevine pangenome.

     
    more » « less
  5. Abstract

    Vitis riparia, a critically important Native American grapevine species, is used globally in rootstock and scion breeding and contributed to the recovery of the French wine industry during the mid-19th century phylloxera epidemic. This species has abiotic and biotic stress tolerance and the largest natural geographic distribution of the North American grapevine species. Here we report an Illumina short-read 369X coverage, draft de novo heterozygous genome sequence ofV. ripariaMichx. ‘Manitoba 37’ with the size of ~495 Mb for 69,616 scaffolds and a N50 length of 518,740 bp. Using RNAseq data, 40,019 coding sequences were predicted and annotated. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models found 96% of the complete BUSCOs in this assembly. The assembly continuity and completeness were further validated usingV. ripariaESTs, BACs, and three de novo transcriptome assemblies of three differentV. ripariagenotypes resulting in >98% of respective sequences/transcripts mapping with this assembly. Alignment of theV. ripariaassembly and predicted CDS with the latestV. vinifera‘PN40024’ CDS and genome assembly showed 99% CDS alignment and a high degree of synteny. An analysis of plant transcription factors indicates a high degree of homology with theV. viniferatranscription factors. QTL mapping toV. riparia‘Manitoba 37’ andV. viniferaPN40024 has identified genetic relationships to phenotypic variation between species. This assembly provides reference sequences, gene models for marker development and understandingV. riparia’s genetic contributions in grape breeding and research.

     
    more » « less