skip to main content


Title: Insights into protein–DNA interactions from hydrogen bond energy‐based comparative protein–ligand analyses
Award ID(s):
2051491
PAR ID:
10321016
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
ISSN:
0887-3585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    AlphaFold2 has revolutionized protein structure prediction from amino‐acid sequence. In addition to protein structures, high‐resolution dynamics information about various protein regions is important for understanding protein function. Although AlphaFold2 has neither been designed nor trained to predict protein dynamics, it is shown here how the information returned by AlphaFold2 can be used to predict dynamic protein regions at the individual residue level. The approach, which is termed cdsAF2, uses the 3D protein structure returned by AlphaFold2 to predict backbone NMR NHS2order parameters using a local contact model that takes into account the contacts made by each peptide plane along the backbone with its environment. By combining for each residue AlphaFold2's pLDDT confidence score for the structure prediction accuracy with the predictedS2value using the local contact model, an estimator is obtained that semi‐quantitatively captures many of the dynamics features observed in experimental backbone NMR NHS2order parameter profiles. The method is demonstrated for a set nine proteins of different sizes and variable amounts of dynamics and disorder.

     
    more » « less
  2. Abstract

    MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α‐proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone‐like Nucleoid Structuring (H‐NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H‐NS‐like protein, which binds AT‐rich regions of genomic DNA and regulates gene expression.

     
    more » « less
  3. Abstract

    Readily available, free, computational approaches, adaptable for topics accessible for first to senior year classes and individual research projects, emphasizing contributions of noncovalent interactions to structure, binding and catalysis were used to teach Course‐based Undergraduate Research Experiences that fulfil generally accepted main CURE components: Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis of quantitative data, Conclusions, and Presentation.

     
    more » « less
  4. Abstract

    The precise regulation of stem cells in the shoot apical meristems (SAMs) involves the function of the homeodomain transcription factor (TF)‐WUSCHEL (WUS). WUS has been shown to move from the site of production‐the rib‐meristem (RM), into overlaying cells of the central zone (CZ), where it specifies stem cells and also regulates the transcription ofCLAVATA3 (CLV3). The secreted signalling peptide CLV3 activates a receptor kinase signalling that restrictsWUStranscription and also regulates the nuclear gradient of WUS by offsetting nuclear export. WUS has been shown to regulate bothCLV3levels and spatial activation, restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS‐domain class of TFs expressed in the RM, has been shown to physically interact with WUS and regulateCLV3expression. However, the mechanisms by which this interaction regulatesCLV3expression non‐cell autonomously remain unclear. Here, we show that HAM function is required for regulating the WUS protein stability, and theCLV3expression responds to altered WUS protein levels inhammutants. Thus, HAM proteins non‐cell autonomously regulatesCLV3expression.

     
    more » « less