skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Twisted tetrathiafulvalene crystals
Optically-active optoelectronic materials are of great interest for many applications, including chiral sensing and circularly polarized light emission. Traditionally, such applications have been enabled by synthetic strategies to design chiral organic semiconductors and conductors. Here, centrosymmetric tetrathiafulvalene (TTF) crystals are rendered chiral on the mesoscale by crystal twisting. During crystallization from the melt, helicoidal TTF fibers were observed to grow radially outwards from a nucleation centre as spherulites, twisting in concert about the growth direction. Because molecular crystals exhibit orientation-dependent refractive indices, periodic concentric bands associated with continually rotating crystal orientations were observed within the spherulites when imaged between crossed polarizers. Under certain conditions, concomitant crystal twisting and bending was observed, resulting in anomolous crystal optical behavior. X-ray diffraction measurements collected on different spherulite bands indicated no difference in the molecular packing between straight and twisted TTF crystals, as expected for microscopic twisting pitches between 20–200 μm. Mueller matrix imaging, however, revealed preferential absorption and refraction of left- or right-circularly polarized light in twisted crystals depending on the twist sense, either clockwise or counterclockwise, about the growth direction. Furthermore, hole mobilities of 2.0 ± 0.9 × 10 −6 cm 2 V −1 s −1 and 1.9 ± 0.8 × 10 −5 cm 2 V −1 s −1 were measured for straight and twisted TTF crystals deposited on organic field-effect transistor platforms, respectively, demonstrating that crystal twisting does not negatively impact charge transport in these systems.  more » « less
Award ID(s):
2003968 2003997 2116183
NSF-PAR ID:
10321120
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Optoelectronic properties of anisotropic crystals vary with direction requiring that the orientation of molecular organic semiconductor crystals is controlled in optoelectronic device active layers to achieve optimal performance. Here, a generalizable strategy to introduce periodic variations in the out‐of‐plane orientations of 5,11‐bis(triisopropylsilylethynyl)anthradithiophene (TIPS ADT) crystals is presented. TIPS ADT crystallized from the melt in the presence of 16 wt.% polyethylene (PE) forms banded spherulites of crystalline fibrils that twist in concert about the radial growth direction. These spherulites exhibit band‐dependent light absorption, photoluminescence, and Raman scattering depending on the local orientation of crystals. Mueller matrix imaging reveals strong circular extinction (CE), with TIPS ADT banded spherulites exhibiting domains of positive or negative CE signal depending on the crystal twisting sense. Furthermore, orientation‐dependent enhancement in charge injection and extraction in films of twisted TIPS ADT crystals compared to films of straight crystals is visualized in local conductive atomic force microscopy maps. This enhancement leads to 3.3‐ and 6.2‐times larger photocurrents and external quantum efficiencies, respectively, in photodetectors comprising twisted crystals than those comprising straight crystals.

     
    more » « less
  2. Abstract

    Chiral hybrid metal halides hold great potential as circularly polarized luminescence light sources. Herein, we have obtained two enantiomeric pairs of one‐dimensional hybrid chiral manganese(II) chloride single crystals,R/S‐(3‐methyl piperidine)MnCl3(R/S‐1) andR/S‐(3‐hydroxy piperidine)MnCl3(R/S‐2), crystallizing in the non‐centrosymmetric space groupP212121. In comparison toR/S‐1,R/S‐2 single crystals not only show red emission with near‐unity photoluminescence quantum yield (PLQY) and high resistance to thermal quenching but also exhibit circularly polarized luminescence with an asymmetry factor (glum) of 2.5×10−3, which can be attributed to the enhanced crystal rigidity resulting from the hydrogen bonding networks betweenR/S‐(3‐hydroxy piperidine) cations and [MnCl6]4−chains. The circularly polarized luminescence activities originate from the asymmetric [MnCl6]4−luminophores induced by N−H⋅⋅⋅Cl hydrogen bonding withR/S‐(3‐hydroxy piperidine). Moreover, these samples demonstrate great application potential in circularly polarized light‐emitting diodes and X‐ray scintillators. This work shows a highly efficient photoluminescent Mn‐based halide and offers a strategy for designing multifunctional chiral metal halides.

     
    more » « less
  3. Abstract

    A great proportion of molecular crystals can be made to grow as twisted fibrils. Typically, this requires high crystallization driving forces that lead to spherulitic textures. Here, it is shown how micron size channels fabricated from poly(dimethylsiloxane) (PDMS) serve to collimate the circular polycrystalline growth fronts of optically banded spherulites of twisted crystals of three compounds, coumarin, 2,5‐bis(3‐dodecyl‐2‐thienyl)‐thiazolo[5,4‐d]thiazole, and tetrathiafulvalene. The relationships between helicoidal pitch, growth front coherence, and channel width are measured. As channels spill into open spaces, collimated crystals “diffract” via small angle branching. On the other hand, crystals grown together from separate channels whose bands are out of phase ultimately become a single in‐phase bundle of fibrils by a cooperative mechanism yet unknown. The isolation of a single twist sense in individual channels is described. We forecast that such chiral molecular crystalline channels may function as chiral optical wave guides.

     
    more » « less
  4. Abstract The presence of in-plane chiral effects, hence spin–orbit coupling, is evident in the changes in the photocurrent produced in a TiS 3 (001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin–orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS 3 is n-type and has an electron mobility in the range of 1–6 cm 2 V −1 s −1 . I – V measurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS 3 contains no heavy elements, the presence of spin–orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS 3 (001) surface. 
    more » « less
  5. Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium( iii )-tris-(acetylacetonato) complex, Ru(acac) 3 . Enantiomerically pure Δ- or Λ-Ru(acac) 3 , characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac) 3 , which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localization and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac) 3 , a system exhibiting D 3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality. 
    more » « less