skip to main content

This content will become publicly available on January 1, 2023

Title: Twisted tetrathiafulvalene crystals
Optically-active optoelectronic materials are of great interest for many applications, including chiral sensing and circularly polarized light emission. Traditionally, such applications have been enabled by synthetic strategies to design chiral organic semiconductors and conductors. Here, centrosymmetric tetrathiafulvalene (TTF) crystals are rendered chiral on the mesoscale by crystal twisting. During crystallization from the melt, helicoidal TTF fibers were observed to grow radially outwards from a nucleation centre as spherulites, twisting in concert about the growth direction. Because molecular crystals exhibit orientation-dependent refractive indices, periodic concentric bands associated with continually rotating crystal orientations were observed within the spherulites when imaged between crossed polarizers. Under certain conditions, concomitant crystal twisting and bending was observed, resulting in anomolous crystal optical behavior. X-ray diffraction measurements collected on different spherulite bands indicated no difference in the molecular packing between straight and twisted TTF crystals, as expected for microscopic twisting pitches between 20–200 μm. Mueller matrix imaging, however, revealed preferential absorption and refraction of left- or right-circularly polarized light in twisted crystals depending on the twist sense, either clockwise or counterclockwise, about the growth direction. Furthermore, hole mobilities of 2.0 ± 0.9 × 10 −6 cm 2 V −1 s −1 and 1.9 ± 0.8 × 10 more » −5 cm 2 V −1 s −1 were measured for straight and twisted TTF crystals deposited on organic field-effect transistor platforms, respectively, demonstrating that crystal twisting does not negatively impact charge transport in these systems. « less
; ; ; ; ; ; ; ;
Award ID(s):
2003968 2003997 2116183
Publication Date:
Journal Name:
Molecular Systems Design & Engineering
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium( iii )-tris-(acetylacetonato) complex, Ru(acac) 3 . Enantiomerically pure Δ- or Λ-Ru(acac) 3 , characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac) 3 , which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localizationmore »and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac) 3 , a system exhibiting D 3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality.« less
  2. Photomechanical materials exhibit mechanical motion in response to light as an external stimulus. They have attracted much attention because they can convert light energy directly to mechanical energy, and their motions can be controlled without any physical contact. This review paper introduces the photomechanical motions of photoresponsive molecular crystals, especially bending and twisting behaviors, from the viewpoint of symmetry breaking. The bending (right–left symmetry breaking) and twisting (chiral symmetry breaking) of photomechanical crystals are based on both intrinsic and extrinsic factors like molecular orientation in the crystal and illumination conditions. The ability to design and control this symmetry breaking will be vital for generating new science and new technological applications for organic crystalline materials.
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. For organic semiconductor crystals exhibiting anisotropic charge transport along different crystallographic directions, nanoconfinement is a powerful strategy to control crystal orientation by aligning the fast crystallographic growth direction(s) with the unconfined axis(es) of nanoconfining scaffolds. Here, design rules are presented to relate crystal morphology, scaffold geometry, and orientation control in solution-processed small-molecule crystals. Specifically, organic semiconductor triisopropylsilylethynyl pyranthrene needle-like crystals with a dimensionality of n = 1 and perylene platelike crystals with n = 2 were grown from solution within nanoconfining scaffolds comprising cylindrical nanopores with a dimensionality of m = 1, representing one unconfined dimension along the cylinder axis, and those comprising nanopillar arrays with a dimensionality of m = 2. For m = n systems, native crystal growth habits were preserved while the crystal orientation in n = m direction(s) was dictated by the geometry of the scaffold. For n ≠ m systems, on the other hand, orientation control was restricted within a single plane, either parallel or perpendicular to the substrate surface. Intriguingly, control over crystal shape was also observed for perylene crystals grown in cylindrical nanopores ( n > m ). Within the nanopores, crystal growth was restricted along a single direction to form a needle-likemore »morphology. Once growth proceeded above the scaffold surface, the crystals adopted their native growth habit to form asymmetric T-shaped single crystals with concave corners. These findings suggest that nanoporous scaffolds with spatially-varying dimensionalities can be used to grow single crystals of complex shapes.« less
  5. The exceptionally high carrier mobility of rubrene derives from the combination of its intrinsic electronic properties and favorable crystal packing that facilitates charge transport. Unlike the planar conformations adopted by rubrene single crystals, however, many rubrene derivatives crystallize with a twisted tetracene core and exhibit poor carrier mobility. Typical density functional theory (DFT) calculations suggest that the twisted conformation is preferred by ∼10–14 kJ mol −1 or more in the gas phase. However, the present work shows that those calculations overestimate the twisting energy by several kJ mol −1 due to density-driven delocalization error, and that the twisting energies are actually only ∼8–10 kJ mol −1 for typical rubrene derivatives when computed with higher-level correlated wave function models. This result has two significant implications for crystal engineering with rubrene derivatives: first, DFT calculations can erroneously predict polymorphs containing twisted rubrene conformations to be more stable, when in fact structures with planar conformations are preferred, as is demonstrated here for perfluororubrene. Second, the smaller twisting energies make it more likely that solid form screening could discover new planar-core polymorphs of rubrene derivatives that have previously been crystallized only in a twisted conformation. These in turn might exhibit better organic semiconducting properties.