skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Three-Dimensional Ligand Immobilization on Kinetic Measurements in Biosensors
The field of biosensing is in constant evolution, propelled by the need for sensitive, reliable platforms that provide consistent results, especially in the drug development industry, where small molecule characterization is of uttermost relevance. Kinetic characterization of small biochemicals is particularly challenging, and has required sensor developers to find solutions to compensate for the lack of sensitivity of their instruments. In this regard, surface chemistry plays a crucial role. The ligands need to be efficiently immobilized on the sensor surface, and probe distribution, maintenance of their native structure and efficient diffusion of the analyte to the surface need to be optimized. In order to enhance the signal generated by low molecular weight targets, surface plasmon resonance sensors utilize a high density of probes on the surface by employing a thick dextran matrix, resulting in a three-dimensional, multilayer distribution of molecules. Despite increasing the binding signal, this method can generate artifacts, due to the diffusion dependence of surface binding, affecting the accuracy of measured affinity constants. On the other hand, when working with planar surface chemistries, an incredibly high sensitivity is required for low molecular weight analytes, and furthermore the standard method for immobilizing single layers of molecules based on self-assembled monolayers (SAM) of epoxysilane has been demonstrated to promote protein denaturation, thus being far from ideal. Here, we will give a concise overview of the impact of tridimensional immobilization of ligands on label-free biosensors, mostly focusing on the effect of diffusion on binding affinity constants measurements. We will comment on how multilayering of probes is certainly useful in terms of increasing the sensitivity of the sensor, but can cause steric hindrance, mass transport and other diffusion effects. On the other hand, probe monolayers on epoxysilane chemistries do not undergo diffusion effect but rather other artifacts can occur due to probe distortion. Finally, a combination of tridimensional polymeric chemistry and probe monolayer is presented and reviewed, showing advantages and disadvantages over the other two approaches.  more » « less
Award ID(s):
2027109 1941195
PAR ID:
10321134
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymers
Volume:
14
Issue:
2
ISSN:
2073-4360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Extracellular vesicles (EVs) have attracted significant attention as impactful diagnostic biomarkers, since their properties are closely related to specific clinical conditions. However, designing experiments that involve EVs phenotyping is usually highly challenging and time-consuming, due to laborious optimization steps that require very long or even overnight incubation durations. In this work, we demonstrate label-free, real-time detection, and phenotyping of extracellular vesicles binding to a multiplexed surface. With the ability for label-free kinetic binding measurements using the Interferometric Reflectance Imaging Sensor (IRIS) in a microfluidic chamber, we successfully optimize the capture reaction by tuning various assay conditions (incubation time, flow conditions, surface probe density, and specificity). A single (less than 1 h) experiment allows for characterization of binding affinities of the EVs to multiplexed probes. We demonstrate kinetic characterization of 18 different probe conditions, namely three different antibodies, each spotted at six different concentrations, simultaneously. The affinity characterization is then analyzed through a model that considers the complexity of multivalent binding of large structures to a carpet of probes and therefore introduces a combination of fast and slow association and dissociation parameters. Additionally, our results confirm higher affinity of EVs to aCD81 with respect to aCD9 and aCD63. Single-vesicle imaging measurements corroborate our findings, as well as confirming the EVs nature of the captured particles through fluorescence staining of the EVs membrane and cargo. 
    more » « less
  2. Small molecules that bind with high affinity and specificity to fibrils of the α-synuclein (αS) protein have the potential to serve as positron emission tomography (PET) imaging probes to aid in the diagnosis of Parkinson's disease and related synucleinopathies. To identify such molecules, we employed an ultra-high throughput in silico screening strategy using idealized pseudo-ligands termed exemplars to identify compounds for experimental binding studies. For the top hit from this screen, we used photo-crosslinking to confirm its binding site and studied the structure–activity relationship of its analogs to develop multiple molecules with nanomolar affinity for αS fibrils and moderate specificity for αS over Aβ fibrils. Lastly, we demonstrated the potential of the lead analog as an imaging probe by measuring binding to αS-enriched homogenates from mouse brain tissue using a radiolabeled analog of the identified molecule. This study demonstrates the validity of our powerful new approach to the discovery of PET probes for challenging molecular targets. 
    more » « less
  3. The spatial arrangement of target and probe molecules on the biosensor is a key aspect of the biointerface structure that ultimately determines the properties of interfacial molecular recognition and the performance of the biosensor. However, the spatial patterns of single molecules on practical biosensors have been unknown, making it difficult to rationally engineer biosensors. Here, we have used high-resolution atomic force microscopy to map closely spaced individual probes as well as discrete hybridization events on a functioning electrochemical DNA sensor surface. We also applied spatial statistical methods to characterize the spatial patterns at the single molecule level. We observed the emergence of heterogeneous spatiotemporal patterns of surface hybridization of hairpin probes. The clustering of target capture suggests that hybridization may be enhanced by proximity of probes and targets that are about 10 nm away. The unexpected enhancement was rationalized by the complex interplay between the nanoscale spatial organization of probe molecules, the conformational changes of the probe molecules, and target binding. Such molecular level knowledge may allow one to tailor the spatial patterns of the biosensor surfaces to improve the sensitivity and reproducibility. 
    more » « less
  4. Anthrax lethal factor (LF) is one of the enzymatic components of the anthrax toxin responsible for the pathogenic responses of the anthrax disease. The ability to screen multiplexed ligands against LF and subsequently estimate the effective kinetic rates (kon and koff) and complementary binding behavior provides critical information useful in diagnostic and therapeutic development for anthrax. Tools such as biolayer interferometry (BLI) and surface plasmon resonance imaging (SPRi) have been developed for this purpose; however, these tools suffer from limitations such as signal jumps when the solution in the chamber is switched or low sensitivity. Here, we present multiplexed antibody affinity measurements obtained by the interferometric reflectance imaging sensor (IRIS), a highly sensitive, label-free optical biosensor, whose stability, simplicity, and imaging modality overcomes many of the limitations of other multiplexed methods. We compare the multiplexed binding results obtained with the IRIS system using two ligands targeting the anthrax lethal factor (LF) against previously published results obtained with more traditional surface plasmon resonance (SPR), which showed consistent results, as well as kinetic information previously unattainable with SPR. Additional exemplary data demonstrating multiplexed binding and the corresponding complementary binding to sequentially injected ligands provides an additional layer of information immediately useful to the researcher. 
    more » « less
  5. Hybridization probes have been used in the detection of specific nucleic acids for the last 50 years. Despite the extensive efforts and the great significance, the challenges of the commonly used probes include (1) low selectivity in detecting single nucleotide variations (SNV) at low ( e.g. room or 37 °C) temperatures; (2) low affinity in binding folded nucleic acids, and (3) the cost of fluorescent probes. Here we introduce a multicomponent hybridization probe, called OWL2 sensor, which addresses all three issues. The OWL2 sensor uses two analyte binding arms to tightly bind and unwind folded analytes, and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form fluorescent ‘OWL’ structure. The OWL2 sensor was able to differentiate single base mismatches in folded analytes in the temperature range of 5–38 °C. The design is cost-efficient since the same UMB probe can be used for detecting any analyte sequence. 
    more » « less