skip to main content


Title: Bias-Enhanced Formation of Metastable and Multiphase Boron Nitride Coating in Microwave Plasma Chemical Vapor Deposition
Boron nitride (BN) is primarily a synthetically produced advanced ceramic material. It is isoelectronic to carbon and, like carbon, can exist as several polymorphic modifications. Microwave plasma chemical vapor deposition (MPCVD) of metastable wurtzite boron nitride is reported for the first time and found to be facilitated by the application of direct current (DC) bias to the substrate. The applied negative DC bias was found to yield a higher content of sp3 bonded BN in both cubic and metastable wurtzite structural forms. This is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Nano-indentation measurements reveal an average coating hardness of 25 GPa with some measurements as high as 31 GPa, consistent with a substantial fraction of sp3 bonding mixed with the hexagonal sp2 bonded BN phase.  more » « less
Award ID(s):
1655280
NSF-PAR ID:
10321137
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials
Volume:
14
Issue:
23
ISSN:
1996-1944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A microwave plasma chemical vapor deposition system was used to synthesize cubic boron nitride (cBN) coatings on diamond seeded silicon substrates using direct current (DC) bias. Effects of the argon (Ar) flow rate and bias voltage on the growth of the cBN coatings were investigated. Hydrogen (H2), argon (Ar), a mixture of diborane in H2 (95% H2, 5% B2H6), and N2 were used in the feed gas. A DC bias system was used for external biasing of the sample, which facilitates the goal of achieving sp3 bonded cBN. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) revealed the existence of sp3-bonded BN in the produced samples. With increasing Ar flow, the cBN content in the coating increases and reaches a maximum at the maximum Ar flow of 400 SCCM used in this study. High-resolution XPS scans for B1s and N1s indicate that the deposited coating contains more than 70% cBN. This study demonstrates that energetic argon ions generated in a microwave-induced plasma significantly increase cBN content in the coating. 
    more » « less
  2. null (Ed.)
    Superhard boron-rich boron carbide coatings were deposited on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) under controlled conditions, which led to either a disordered or crystalline structure, as measured by X-ray diffraction. The control of either disordered or crystalline structures was achieved solely by the choice of the sample being placed either directly on top of the sample holder or within an inset of the sample holder, respectively. The carbon content in the B-C bonded disordered and crystalline coatings was 6.1 at.% and 4.5 at.%, respectively, as measured by X-ray photoelectron spectroscopy. X-ray diffraction analysis of the crystalline coating provided a good match with a B50C2-type structure in which two carbon atoms replaced boron in the α-tetragonal B52 structure, or in which the carbon atoms occupied different interstitial sites. Density functional theory predictions were used to evaluate the dynamical stability of the potential B50C2 structural forms and were consistent with the measurements. The measured nanoindentation hardness of the coatings was as high as 64 GPa, well above the 40 GPa threshold for superhardness. 
    more » « less
  3. Cubic boron nitride (c-BN), with a small 1.4% lattice mismatch with diamond, presents a heterostructure with multiple opportunities for electronic device applications. However, the formation of c-BN/diamond heterostructures has been limited by the tendency to form hexagonal BN at the interface. In this study, c-BN has been deposited on free standing polycrystalline and single crystal boron-doped diamond substrates via electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD), employing fluorine chemistry. In situ x-ray photoelectron spectroscopy (XPS) is used to characterize the nucleation and growth of boron nitride (BN) films as a function of hydrogen gas flow rates during deposition. The PECVD growth rate of BN was found to increase with increased hydrogen gas flow. In the absence of hydrogen gas flow, the BN layer was reduced in thickness or etched. The XPS results show that an excess of hydrogen gas significantly increases the percent of sp2 bonding, characteristic of hexagonal BN (h-BN), particularly during initial layer growth. Reducing the hydrogen flow, such that hydrogen gas is the limiting reactant, minimizes the sp2 bonding during the nucleation of BN. TEM results indicate the partial coverage of the diamond with thin epitaxial islands of c-BN. The limited hydrogen reaction is found to be a favorable growth environment for c-BN on boron-doped diamond.

     
    more » « less
  4. We present an investigation on the structures and chemical bonding of two Bi-doped boron clusters BiBn− (n = 4, 5) using photoelectron spectroscopy and theoretical calculations. The electron affinities of BiB4 and BiB5 are measured to be 2.22(2) eV and 2.61(2) eV, respectively. Well-resolved photoelectron spectra are obtained and used to compare with theoretical calculations to verify the structures of BiB4− and BiB5−. Both clusters adopt planar structures with the Bi atom bonded to the periphery of the planar Bn moiety. Chemical bonding analyses reveal that the Bn moiety maintains σ and π double-aromaticity. The Bi atom is found to induce relatively small structural changes to the Bn moiety, very different from transition metal-doped boron clusters.

     
    more » « less
  5. Abstract

    The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high‐resolution patterning of hexagonal boron nitride (h‐BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated. Raman spectroscopy is used to study the defects induced by the ion beam patterning and is correlated to scanning probe microscopy. Photothermal and scanning near‐field optical microscopy measure the resulting near‐field absorption and scattering of the nanostructures. These measurements reveal a large photothermal expansion of nanostructured h‐BN that is dependent on the height to width aspect ratio of the nanostructures. This effect is attributed to the large anisotropy of the thermal expansion coefficients of h‐BN and the nanostructuring implemented. The photothermal expansion should be present in other van der Waals materials with large anisotropy and can lead to applications such as nanomechanical switches driven by light.

     
    more » « less