skip to main content


Title: The Effects of Degassing on Magmatic Gas Waves and Long Period Eruptive Precursors at Silicic Volcanoes
Abstract

Cyclical ground deformation, associated seismicity, and elevated degassing are important precursors to explosive eruptions at silicic volcanoes. Regular intervals for elevated activity (6–30 hr) have been observed at volcanoes such as Mount Pinatubo in the Philippines and Soufrière Hills in Montserrat. Here, we explore a hypothesis originally proposed by Michaut et al. (2013,https://doi.org/10.1038/ngeo1928) where porosity waves containing magmatic gas are responsible for the observed periodic behavior. We use two‐phase theory to construct a model where volatile‐rich, bubbly, viscous magma rises and decompresses. We conduct numerical experiments where magma gas waves with various frequencies are imposed at the base of the model volcanic conduit. We numerically verify the results of Michaut et al. (2013,https://doi.org/10.1038/ngeo1928) and then expand on the model by allowing magma viscosity to vary as a function of dissolved water and crystal content. Numerical experiments show that gas exsolution tends to damp the growth of porosity waves during decompression. The instability and resultant growth or decay of gas wave amplitude depends strongly on the gas density gradient and the ratio of the characteristic magma extraction rate to the characteristic magma degassing rate (Damköhler number, Da). We find that slow degassing can lead to a previously unrecognized filtering effect, where low‐frequency gas waves may grow in amplitude. These waves may set the periodicity of the eruptive precursors, such as those observed at Soufrière Hills Volcano. We demonstrate that degassed, crystal‐rich magma is susceptible to the growth of gas waves which may result in the periodic behavior.

 
more » « less
Award ID(s):
1645057
NSF-PAR ID:
10453517
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
10
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hundreds of earthquakes were recorded during a nine‐month ocean bottom seismometer deployment surrounding Lō'ihi submarine volcano, Hawai'i. The 12‐station ocean bottom seismometer network widened the aperture of earthquake detection around the Big Island, allowing better constraints on the location of seismicity offshore Hawai'i. Although this deployment occurred during a time of volcanic quiescence for Lō'ihi, it establishes an important basis for background seismicity of the volcano. Offshore seismicity during this study was dominated by events located in the mantle fault zone at depths of 25–40 km. These events reflect rupture on preexisting faults in the lower lithosphere caused by stresses induced by volcano loading and flexure of the Pacific Plate (Pritchard et al., 2007,https://doi.org/10.1111/j.1365‐246X.2006.03169.x; Wolfe et al., 2004,https://doi.org/10.1029/2003GC000618). Tomography was performed using double‐difference seismic tomography and showed shallow velocities to be slower than the regional velocity model (HG50; Klein, 1981,https://pubs.geoscienceworld.org/ssa/bssa/article/71/5/1503/118231/A‐linear‐gradient‐crustal‐model‐for‐south‐Hawaii). A broad, low‐velocity anomaly was observed from 20–40‐km depth, and is suggestive of the central plume conduit that supplies magma to Lō'ihi and the active volcanoes of the Big Island. A localized high‐velocity body is observed 4–6‐km depth beneath Lō'ihi's summit, extending 10 km to the north and south. Following Lō'ihi's active rift zones and crossing the summit, this high‐velocity body is characteristic of intrusive material. Two low‐velocity anomalies are observed below the oceanic crust, interpreted as melt accumulation beneath Lō'ihi and magmatic underplating beneath Hawai'i Island.

     
    more » « less
  2. Abstract

    Recent field studies have shown that the presence of ash in the atmosphere can produce measurable attenuation of Global Positioning System (GPS) signals (Aranzulla et al., 2013,https://doi.org/10.1007/s10291-012-0294-4; Larson, 2013,https://doi.org/10.1002/grl.50556; Larson et al., 2017,https://doi.org/10.1016/j.jvolgeores.2017.04.005). The ability to detect plumes using GPS is appealing because many active volcanoes are already instrumented with high‐quality receivers. However, analyses using a Ralyeigh approximation have shown that the large attenuations cannot be explained by the scattering and absorption associated with ash or hydrometeors alone. Here, we show that the extinction of GPS signals, which fall into the L‐band of the electromagnetic spectrum, may be exacerbated significantly by excess surface charge on pyroclasts. Indeed, volcanic eruptions are often accompanied by a range of electrostatic processes, leading, in some cases, to spectacular lightning storms. We use a modified Mie scattering model to demonstrate that electrostatic effects can increase the extinction of L‐band radiation by up to an order of magnitude, producing attenuations consistent with those observed in the field. Thus, future work involving GPS as a tool to remotely probe plumes must take into account the electrification of ash in radiative transfer models. Additionally, we propose that the sensitivity of GPS to particle charging may catalyze the development of new techniques to explore electrostatic processes in plumes, especially if GPS measurements are complemented with millimeter‐wave RADAR measurements.

     
    more » « less
  3. Abstract

    We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.

     
    more » « less
  4. Abstract

    Oxygen measurements by in situ sensors on remote platforms are used to determine net biological oxygen fluxes in the surface ocean. On an annual basis these fluxes are stoichiometrically related to the export of organic carbon from the upper ocean (the ocean's biological carbon pump). In situ measurements on remote platforms make it feasible to observe the annual biological oxygen flux globally, but the accuracy of these estimates during periods of high winds depends on model‐determined fluxes by bubble processes created by breaking waves. We verify the importance of bubble processes in the gas exchange model of Liang et al. (2013,https://doi.org/10.1002gbc.20080) using surface‐ocean N2gas measurements determined from observations of dissolved gas pressure and oxygen concentrations every 3 hr on a mooring in the northeast subarctic Pacific at Ocean Station Papa. The changes in N2concentration during 10 separate monthlong periods in the winters between 2007 and 2016 indicate that bubble processes in the gas exchange model are over predicted by about a factor of 3 at this location. (The bubble mass transfer coefficients must be multiplied by 0.37 ± 0.14 to match the observations.) These results can be used to adjust model‐determined bubble fluxes to yield more accurate measurements of net biological oxygen production until the next generation gas‐exchange models are developed.

     
    more » « less
  5. Abstract

    “Classical shadows” are estimators of an unknown quantum state, constructed from suitably distributed random measurements on copies of that state (Huang et al. in Nat Phys 16:1050, 2020,https://doi.org/10.1038/s41567-020-0932-7). In this paper, we analyze classical shadows obtained using random matchgate circuits, which correspond to fermionic Gaussian unitaries. We prove that the first three moments of the Haar distribution over thecontinuousgroup of matchgate circuits are equal to those of thediscreteuniform distribution over only the matchgate circuits that are also Clifford unitaries; thus, the latter forms a “matchgate 3-design.” This implies that the classical shadows resulting from the two ensembles are functionally equivalent. We show how one can use these matchgate shadows to efficiently estimate inner products between an arbitrary quantum state and fermionic Gaussian states, as well as the expectation values of local fermionic operators and various other quantities, thus surpassing the capabilities of prior work. As a concrete application, this enables us to apply wavefunction constraints that control the fermion sign problem in the quantum-classical auxiliary-field quantum Monte Carlo algorithm (QC-AFQMC) (Huggins et al. in Nature 603:416, 2022,https://doi.org/10.1038/s41586-021-04351-z), without the exponential post-processing cost incurred by the original approach.

     
    more » « less