skip to main content


Title: Facial Expression Neutralization With StoicNet
Expression neutralization is the process of synthetically altering an image of a face so as to remove any facial expression from it without changing the face's identity. Facial expression neutralization could have a variety of applications, particularly in the realms of facial recognition, in action unit analysis, or even improving the quality of identification pictures for various types of documents. Our proposed model, StoicNet, combines the robust encoding capacity of variational autoencoders, the generative power of generative adversarial networks, and the enhancing capabilities of super resolution networks with a learned encoding transformation to achieve compelling expression neutralization, while preserving the identity of the input face. Objective experiments demonstrate that StoicNet successfully generates realistic, identity-preserved faces with neutral expressions, regardless of the emotion or expression intensity of the input face.  more » « less
Award ID(s):
1846076
NSF-PAR ID:
10321201
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. According to a classical view of face perception (Bruce and Young, 1986; Haxby et al., 2000), face identity and facial expression recognition are performed by separate neural substrates (ventral and lateral temporal face-selective regions, respectively). However, recent studies challenge this view, showing that expression valence can also be decoded from ventral regions (Skerry and Saxe, 2014; Li et al., 2019), and identity from lateral regions (Anzellotti and Caramazza, 2017). These findings could be reconciled with the classical view if regions specialized for one task (either identity or expression) contain a small amount of information for the other task (that enables above-chance decoding). In this case, we would expect representations in lateral regions to be more similar to representations in deep convolutional neural networks (DCNNs) trained to recognize facial expression than to representations in DCNNs trained to recognize face identity (the converse should hold for ventral regions). We tested this hypothesis by analyzing neural responses to faces varying in identity and expression. Representational dissimilarity matrices (RDMs) computed from human intracranial recordings (n= 11 adults; 7 females) were compared with RDMs from DCNNs trained to label either identity or expression. We found that RDMs from DCNNs trained to recognize identity correlated with intracranial recordings more strongly in all regions tested—even in regions classically hypothesized to be specialized for expression. These results deviate from the classical view, suggesting that face-selective ventral and lateral regions contribute to the representation of both identity and expression.

    SIGNIFICANCE STATEMENTPrevious work proposed that separate brain regions are specialized for the recognition of face identity and facial expression. However, identity and expression recognition mechanisms might share common brain regions instead. We tested these alternatives using deep neural networks and intracranial recordings from face-selective brain regions. Deep neural networks trained to recognize identity and networks trained to recognize expression learned representations that correlate with neural recordings. Identity-trained representations correlated with intracranial recordings more strongly in all regions tested, including regions hypothesized to be expression specialized in the classical hypothesis. These findings support the view that identity and expression recognition rely on common brain regions. This discovery may require reevaluation of the roles that the ventral and lateral neural pathways play in processing socially relevant stimuli.

     
    more » « less
  2. Recent neuroimaging evidence challenges the classical view that face identity and facial expression are processed by segregated neural pathways, showing that information about identity and expression are encoded within common brain regions. This article tests the hypothesis that integrated representations of identity and expression arise spontaneously within deep neural networks. A subset of the CelebA dataset is used to train a deep convolutional neural network (DCNN) to label face identity (chance = 0.06%, accuracy = 26.5%), and the FER2013 dataset is used to train a DCNN to label facial expression (chance = 14.2%, accuracy = 63.5%). The identity-trained and expression-trained networks each successfully transfer to labeling both face identity and facial expression on the Karolinska Directed Emotional Faces dataset. This study demonstrates that DCNNs trained to recognize face identity and DCNNs trained to recognize facial expression spontaneously develop representations of facial expression and face identity, respectively. Furthermore, a congruence coefficient analysis reveals that features distinguishing between identities and features distinguishing between expressions become increasingly orthogonal from layer to layer, suggesting that deep neural networks disentangle representational subspaces corresponding to different sources. 
    more » « less
  3. Recent work on 3D-aware image synthesis has achieved compelling results using advances in neural rendering. However, 3D-aware synthesis of face dynamics hasn't received much attention. Here, we study how to explicitly control generative model synthesis of face dynamics exhibiting non-rigid motion (e.g., facial expression change), while simultaneously ensuring 3D-awareness. For this we propose a Controllable Radiance Field (CoRF): 1) Motion control is achieved by embedding motion features within the layered latent motion space of a style-based generator; 2) To ensure consistency of background, motion features and subject-specific attributes such as lighting, texture, shapes, albedo, and identity, a face parsing net, a head regressor and an identity encoder are incorporated. On head image/video data we show that CoRFs are 3D-aware while enabling editing of identity, viewing directions, and motion. 
    more » « less
  4. Recent neural evidence challenges the traditional view that face identity and facial expressions are processed by segregated neural pathways, showing that information about identity and expression are encoded within common brain regions. This article tests the hypothesis that integrated representations of identity and expression arise naturally within neural networks. Deep networks trained to recognize expression and deep networks trained to recognize identity spontaneously develop representations of identity and expression, respectively. These findings serve as a “proof-of-concept” that it is not necessary to discard task-irrelevant information for identity and expression recognition. 
    more » « less
  5. Morph images threaten Facial Recognition Systems (FRS) by presenting as multiple individuals, allowing an adversary to swap identities with another subject. Morph generation using generative adversarial networks (GANs) results in high-quality morphs unaffected by the spatial artifacts caused by landmark-based methods, but there is an apparent loss in identity with standard GAN-based morphing methods. In this paper, we propose a novel StyleGAN morph generation technique by introducing a landmark enforcement method to resolve this issue. Considering this method, we aim to enforce the landmarks of the morphed image to represent the spatial average of the landmarks of the bona fide faces and subsequently the morph images to inherit the geometric identity of both bona fide faces. Exploration of the latent space of our model is conducted using Principal Component Analysis (PCA) to accentuate the effect of both the bona fide faces on the morphed latent representation and address the identity loss issue with latent domain averaging. Additionally, to improve high frequency reconstruction in the morphs, we study the train-ability of the noise input for the StyleGAN2 model. 
    more » « less